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ABSTRACT

We show that it is possible to obtain a very complete 3D
metric reconstruction of the surrounding scene from two
or more uncalibrated omnidirectional images. In particu-
lar, we demonstrate that omnidirectional images with an-
gle of view above 180◦ can be reliably autocalibrated. We
also show that wide angle images provide reliable informa-
tion about their camera positions and orientations. We link
together a method for simultaneous omnidirectional cam-
era model and epipolar geometry estimation and a method
for factorization-based 3D reconstruction in order to obtain
metric reconstruction of unknown scene observed by un-
calibrated omnidirectional images. The 3D reconstruction
is done from automatically established image correspon-
dences only. We demonstrate our method in experiments
with Nikon FC–E8 and Sigma 8mm-f4-EX fish-eye lenses.
Nevertheless, the proposed method can be used for a large
class of non-perspective central omnidirectional cameras.

1. INTRODUCTION

In comparison to standard cameras with narrow view an-
gle, omnidirectional cameras capture larger part of a sur-
rounding scene. Large angle of view often allows to es-
tablish more spacious point correspondences which leads
to a more complete 3D reconstruction from fewer images.
Notice in Fig. 1 how large part of a scene can be recon-
structed from two omnidirectional images only. An occur-
rence of degenerate scenes (e.g. when only a single plane is
observed in the image) is less probable with omnidirectional
images and therefore more stable ego-motion estimation is
often achieved.

We show that 3D metric reconstruction of the surround-
ing scene from two or more uncalibrated omnidirectional
images can be performed very similarly as with standard
perspective cameras. First, the omnidirectional camera is
calibrated using image correspondences and epipolar con-
straint [15]. Secondly, a projective factorization-based re-
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Fig. 1. 3D metric reconstruction of a Venice yard from two
uncalibrated omnidirectional images with automatically de-
tected point correspondences.

construction from many images handling occlusions [12] is
used. Finally, an upgrade to a metric reconstruction is per-
formed. The proposed linear estimation techniques give a
good starting point for a non-linear bundle adjustment en-
forcing metric constraints on the reconstruction and includ-
ing lens nonlinearity.

In the next, we assume rigid scene, elliptical (usually
circular) view field, and approximately known correspond-
ing view angle. We concentrate on fish-eye lenses, namely
Nikon FC–E8 and Sigma 8mm-f4-EX fish-eye. However,
the proposed method for 3D reconstruction can be applied
to a large class of non-perspective central omnidirectional
cameras based on lenses as well as on mirrors. Fish-eye
lenses with view angle larger than 180◦ are, at least in



terms of image point representation and image formation
non-linearity, same as central panoramic catadioptric cam-
eras [17].

Previous works on the calibration of omnidirectional
catadioptric cameras assumed presence of lines in scene [6],
planar motion of the camera [7], or used some information
about the shape of mirrors [4]. In [10], the calibration was
performed from point correspondences and epipolar con-
straint through minimizing of an objective function. Our
approach is similar in its goal but introduces a new method
that provides a closed-form solution of camera model pa-
rameters and epipolar geometry as a solution of a quadratic
eigenvalue problem. It allows to incorporate our method in
RANSAC robust estimation technique handling mismatches
in automatically established point correspondences.

Previous work related to 3D reconstruction from omni-
directional images assumed uncalibrated [5] or usually cal-
ibrated catadioptric sensors. In [5], the para-catadioptric
camera calibration is performed from an image of the abso-
lute conic. It is shown that Euclidean reconstruction is fea-
sible from two views with constant parameters. Relations
that exist between multiple views of a static scene, where
the views can be taken by any mixture of para-catadioptric,
perspective or affine cameras, were described in [18] and us-
age of this theory for motion estimation, 3D reconstruction
or (self-) calibration was indicated. The 3D reconstruction
from large sets of calibrated omnidirectional images with
help of GPS was introduced in [14]. Similarly, in [1], a
multi-baseline stereo algorithm for 3D reconstruction of an
environment from a set of panoramic images with known
camera positions was described. There were other works,
different in principle from our method, assuming calibrated
omnidirectional cameras for 3D reconstruction [3, 11] and
structure from motion [2].

The main contribution of our method insists in the exten-
sion of multiple view metric 3D reconstruction from many
uncalibrated images to omnidirectional cameras with large
field of view and highly nonlinear image projection.

2. OMNIDIRECTIONAL CAMERA

Rays of the image will be represented as a set of unit vectors
in R

3 such that one vector corresponds just to one image of
a scene point, see Fig. 2.

Let us assume that u = (u, v)> are coordinates of a point
in a pre-calibrated (will be explained later) image with the
origin of the coordinate system in the center of the view
field circle (u0, v0)

>. The radius r of an image point is
transformed to the angle θ of a corresponding 3D vector,
see Fig. 2, by a nonlinear function. For Nikon and Sigma
fish-eye lenses, respectively, we use the models
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Fig. 2. (a) Nikon FC–E8 fish-eye converter. (b) The optical
axis of the lens is marked by the dash dotted line and the
optical center from which rays emanate is shown as the red
dot. The angle between a ray and the optical axis is denoted
by θ. (c) The image taken by the lens to the planar sensor π

can be represented by intersecting a spherical retina ρ with
camera half-rays.

where θ is the angle between a ray and the optical axis, and
r =

√
u2 + v2 is the radius of a point in the image plane

w.r.t. (u0, v0)
>, and a, b are parameters of the models. The

models may have various forms determined by the lens or
the mirror construction.

The relationship between the 3D vector p emanating
from the optical center towards a scene point and the im-
age point u can be expressed up to scale as

p ' g(u) =

(
u

f(u, a, b)

)

=
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r
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)

=
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)

, (2)

where f(u) is a rotationally symmetric function w.r.t. the
point (u0, v0)

>. See [15] for more detail.

2.1. Calibration from the epipolar geometry

The epipolar geometry can be formulated for the omnidi-
rectional central panoramic cameras [17] as well as for om-
nidirectional cameras with fish-eye converters, which have
a single center of projection.

By the calibration of the omnidirectional camera we un-
derstand the determination of the affine transformation A

from a view field ellipse to a circle, the symmetry cen-
ter (u0, v0), and camera model parameters a, b. The point
(u0, v0) is estimated as the center of the elliptical view field.
After applying the calibration matrix A, the precalibrated
image with square pixel and radial symmetry of non-linear
mapping is obtained. Parameters a, b remain unknown and
will be estimated from the epipolar geometry.

Function f(u, a, b) in Eq.(2) can be linearized and the ray
direction vector p can be then written, using Eq.(2), as

p ≈
[(

u

f(.)− a0fa(.)− b0fb(.)

)

+ a
(

0

fa(.)

)

+ b
(

0

fb(.)

)]

=

= x + as + bt,

where x, s, and t are the known vectors computed from
image coordinates, a and b are the unknown parameters, and
fa, fb are partial derivatives of f(.) w.r.t. a and b.



Using the epipolar constraint for vectors pl in the left and
pr in the right image

p>l Fpr = 0

(xl + asl + btl)
>
F(xr + asr + btr) = 0

leads after arranging of unknown parameters to Quadratic
Eigenvalue Problem (QEP) [20]:

(D1 + aD2 + a2
D3)h = 0, (3)

which can be solved, e.g., by MATLAB using the func-
tion polyeig. Parameters a, b, and matrix F can be thus
computed simultaneously. A robust technique based on
RANSAC with bucketing introduced in [16, 21] can be ap-
plied.

Parameters of the camera model described in Eq.(2) and
matrix F for an image pair are recovered. Angles between
rays and the camera optical axis become known, F is there-
fore an essential matrix and a calibrated camera is obtained.
Reader is referred to [15] for more detailed explanation.

3. PROJECTIVE RECONSTRUCTION

Since parameters a, b in Eq. (2) have been obtained from the
calibration, a vector p satisfying multi-view constraints can
be constructed for every image point. It allows to perform
projective reconstruction of a surrounding scene.

Suppose a set of n 3D points is observed by m central
omnidirectional cameras. Not all points are visible in all
views. There may be outliers, i.e. mismatches in correspon-
dences. The goal is to reject outliers and to recover 3D
structure (point locations) and motion (camera locations)
from the remaining image measurements.

Let Xp be the unknown homogeneous coordinate vectors
of 3D points, Pi the unknown 3×4 projection matrices, and
pi

p the corresponding coordinate vectors of measured image
points, where i = 1, . . , m labels images and p = 1, . . , n

labels points. Due to occlusions, some pi
p are unknown.

The basic image projection equation says that pi
p are pro-

jections of Xp up to unknown scale factors λi
p, which will

be called (projective) depths: λi
pp

i
p = P

iXp. All projec-
tions can be gathered into a matrix equation
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where marks × stand for unknown elements which could
not be measured due to occlusions, X and P stand for
structure and motion, respectively. The 3m × n matrix
[pi

p]i=1..m,p=1..n will be called the measurement matrix
(MM). The MM may have missing elements and outliers.

As a result of Sec. 2.1, matches between pairs of im-
ages satisfying the epipolar constraint have been obtained.
They are not guaranteed to be all the true correspon-
dences. Therefore, an outlier detection technique may still
be needed to reject remaining outliers that can only be found
using more than two images. Image pairs were read in a se-
quence. The matches between image pairs were placed into
the MM so that the overlapping matches were joined.

The main idea for outlier detection is that minimal con-
figurations of points in triples of images are sufficient to
validate inliers reliably. The RANSAC paradigm is used.
Trifocal tensors are computed from randomly selected min-
imal six-tuples of points in triples of images. Ray orienta-
tions had to be estimated so that rays projected to the proper
image points. Quasiaffine [8] upgrade was computed for the
six points in the three images only. Then, the three camera
matrices had the right signs w.r.t. the six vectors. Moreover,
it turned out in our experiments that most1 of the points re-
constructed using such cameras were properly signed (see
more in Sec. 4). If there are sufficiently enough points con-
sistent with the three cameras2, the consistent points not
used to estimate the trifocal tensor are validated as inliers.
Sampling is repeated until the set of inliers is sufficient to
make the projective reconstruction described below.

Projective reconstruction is done by factorization of the
MM with occlusions into structure and motion [12]. This
method can handle perspective and also any central views
and occlusions jointly. The projective depths of image
points are estimated by the method of Sturm & Triggs [19]
using the epipolar geometry. Occlusions are solved by an
extension of the method by Jacobs [9] for filling the missing
data, which can exploit also points with unknown depths.

A set of inliers consistent with the projective reconstruc-
tion is found in the following way. In a column of the MM, a
pair of image points consistent with the corresponding cam-
eras is searched for. Such a pair forms a track. An image
point is joined into a track if the point and the track are con-
sistent with cameras as a whole. Columns may also contain
more or no track.

It turned out that it is possible to correctly merge tracks
with close reprojections even if they are from different
columns of the MM. If there are more candidates, the
longest one is chosen because of stability. If they are still
more than one, the one from the same column is preferred
because there may be some correct pair-wise match by
which the tracks got into the same column during building
the MM. Also single image points (tracks of length one) are
merged this way.

1We have not examined how this differed for the right tensors and the
ones contaminated by an outlier. Nevertheless, the quasiaffine upgrade
existed for the projective reconstruction from all validated points in our
experiments.

2Image points are consistent if all reprojection errors of a reconstructed
world point are below a given threshold.



By track merging, tracks significantly prolong, as shown
in Fig. 3c. In fact, by this technique, new matches are gen-
erated. This is significant for closed sequences whose struc-
ture of the MM is strictly diagonal at the beginning but the
first and last views join after track merging, see Fig. 3d.

4. UPGRADE TO METRIC RECONSTRUCTION

The vector p in Eq.(2) is determined up to a rotation R and
a scalar λ with respect to the directional vector of the corre-
sponding ray in a Cartesian world coordinate system

p′′ = λ

(
R
−1

1

)

p ' (R′′| − R
′′
T
′′)X.

Estimated vector p is thus related to scene point X,
expressed in a metric coordinate system, by p '
RT (I| − T

′′)X. The matrix RT represents a rotation of
the estimated coordinates of the camera in the world co-
ordinate frame. It is clear that calibration matrix [8] K =
diag(1, 1, 1).

Orientation of rays in omnidirectional cameras must be
taken into account because the rays with the opposite ori-
entations project into different image points. Therefore, to
obtain a metric upgrade after the projective reconstruction,
orientation of rays has to be properly estimated. This was
done using the so-called oriented-projective or quasi-affine
reconstruction [8]. Ray orientations had to be estimated also
in the outlier detection stage after the tensor estimation so
that rays projected to the proper image points.

The final step of the metric upgrade was done by find-
ing a transformation into a Euclidean basis. Some arbitrar-
ily chosen image pair [ij] was used to estimate the essen-
tial matrix [8]. However, there can be too few correspon-
dences between the images to estimate the essential matrix.
Therefore, the essential matrix was estimated from the re-
projections of all reconstructed points into the image pair.
New projection matrices, A, B, were directly estimated from
the essential matrix up to a two fold ambiguity [8, page
240]3. The quasi-affine reconstruction was transformed to
a Euclidean one by a projective transformation, H, so that
the corresponding camera matrices became aligned with
[A>|B>]> in some four rows. Nevertheless, due to noise
in the data and hence also in the quasi-affine reconstruction,
the remaining two rows were not aligned. Consequently, the
internal parameter matrices, Ks, could not be identity. To
put Ks as close to identity as possible, H was iteratively im-
proved by the linear projection in which the new projection
matrices are obtained as Ri[I|−ti] where Pi = K

i
R

i[I|−ti]4.

3The four fold ambiguity from [8, page 240] was reduced to two fold
one by employing positivity constraint on 3 × 3 determinants of the first
three columns of the projection matrices.

4For stability even in (hypothetical) case of huge number of cameras,
the iterative process was first applied on the image pair used to estimate the
essential matrix and right afterwards on all the images.

It turned out that this process converges in five or ten iter-
ations for the data used in the paper. After that, Ks were
very close to identity so setting P

i = R
i[I| − ti] increased

the reprojection error only slightly even without bundle ad-
justment. There is still remaining the two fold ambiguity
of camera matrices. The two solutions differ exactly by the
sign of the last column of P i.e. they are related by projec-
tive transformation diag(1, 1, 1,−1). The one leading to a
higher number of scene points with the positive fourth co-
ordinate is chosen.

5. FINDING CORRESPONDENCES

The automatic search for correspondences in omnidirec-
tional images becomes more complicated than in perspec-
tive images because the affine invariance of corresponding
features, used by most of methods, is preserved only ap-
proximately for large motions of the camera.

Nevertheless, in many practical situations, omnidirec-
tional images can be matched by technique [13] that has
been developed for conventional wide baseline perspective
images. In experiments presented here, only moderate mo-
tions of the camera were made, and only smaller regions in
images were used to establish tentative correspondences.

6. EXPERIMENTS

In all experiments, the tentative correspondences, i.e. cen-
ters of gravity of every region, were obtained by [13]. As
a result of applying the calibration method described in
Sec. 2.1, the camera model and the essential matrix were
obtained and most outliers rejected. Partial correspondences
from image pairs were integrated into the measurement ma-
trix as described in Sec. 3. Final 3D reconstructions were
improved by a non-linear bundle adjustment tuning all 3D
points Xi, camera matrices P

i and camera model param-
eters (u0, v0)

>, a, and b, and enforcing the same internal
parameters for all cameras. To show the quality of the 3D
reconstruction, some correspondences, like corners on the
walls, have been established manually. The estimated cam-
era matrices were used for reconstructing these points. Fi-
nally, textures were mapped on the planes created by the
reconstructed 3D points.

In our first experiment, one image pair was selected from
the Venice Yard QY dataset, acquired by the Sigma 8mm-
f4-EX fish-eye lens with view angle 180◦ mounted on the
Canon EOS–1Ds digital camera with resolution 4064×2704
pxl. The obtained calibrated cameras and validated point
matches were used for 3D reconstruction achieved by a lin-
ear technique [8]. See Fig. 1 for a result. Notice how precise
and complete the 3D reconstruction from only two omnidi-
rectional images can be obtained. The RMS of the reprojec-
tion error was 0.25 pxl.



Scene Lab side motion: 11 imgs [1172× 1172] Venice: 13 imgs [2528× 2528]
Correspondences / missing data 1119 / 62.62 % 1846 / 77.58 %
Image points consistent with EG 4614 (48.57 % of all regions) 5385 (53.92 % of all regions)
Image points consistent with MVG 4591 (99.50 % of 4614 image points) 5301 (98.44 % of 5385 image points)
Outliers 23 (0.50 % of 4614 image points) 84 (1.56 % of 5385 image points)
Rec. / partially rec. / not-rec. corr. 1117 / 16 / 2 of 1119 1833 / 54 / 13 of 1846
Mean / maximal reprojection error 0.23 / 1.00 pxl (inliers @ thr = 1 pxl) 0.28 / 1.00 pxl (inliers @ thr = 1 pxl)

(a) (b)
Length of reconstructed tracks 11 10 9 8 7 6 5 4 3 2 all
No track merging 0 0 13 6 14 19 44 148 440 1391 2075
After track merging 11 1 4 19 40 52 79 175 357 1112 1850

(c)
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Fig. 3. Metric reconstruction. (a) The first, the middle, and the last image from the lab side motion sequence with inliers and
three views of reconstructed scene points with camera positions are shown. Notice that all reconstructed points are the points
in the view field of the cameras and the cameras lie on a line. (b) Reconstruction of the Venice Yard QY sequence with camera
positions. For comparison, only reconstructed points are shown on top whereas only textures from the same view-point are
shown in the middle. Summary table is given for both sequences. (c) Lengths of the reconstructed tracks without and with
track merging. Notice the amount of longer tracks after merging. (d) Measurement matrix for the Venice sequence. Without
track merging, the matrix would be dominantly diagonal, i.e. no correspondences between first and last views would be used.



In our second experiment, all images from the Venice
Yard QY dataset were used. The obtained camera model
was used in 3D reconstruction by factorization described in
Sec. 3, followed by the metric upgrade given in Sec. 4. One
pixel was set as the threshold on outlier detection accuracy.

Fig. 3ab shows the metric reconstruction of scene points
and camera positions. The table shows number of im-
ages and sizes of the cropped images containing the view
field circle, number of found correspondences, amount
of the missing data, amount of the image points used in
the multi-view projective reconstruction (these were al-
ready consistent with epipolar geometries), amount of the
detected inliers consistent with the multi-view geometry,
amount of the reconstructed, partially reconstructed, and
not-reconstructed correspondences, and the Euclidean re-
projection errors of the reconstruction without outliers. In
structure of the MM of the Venice scene, see Fig. 3d, “•”
stand for inliers, “•” stand for outliers, and “ ” stand for the
missing data.

In the third experiment, Nikon FC–E8 fish-eye lens
was mounted on the Nikon COOLPIX digital camera with
1600×1200 pxl. The camera was moving along a line in
constant steps (15cm) capturing the scene at direction per-
pendicular to motion. Notice in Fig3a, that the estimated
trajectory is really straight and distances between all 11
cameras are equal. It can be seen in the top-view of Fig. 3a
that all reconstructed points are the points in the field of
view of the cameras. See table in Fig. 3a for results.

7. SUMMARY AND CONCLUSIONS

The paper presented a 3D metric reconstruction technique
from uncalibrated omnidirectional images. As the main
contribution, the paper shows that omnidirectional cameras
with highly non-linear projection can be used for 3D re-
construction in the same manner as the standard perspective
cameras with narrow view angle.

Using camera with resolution 1200×1200 pxl and lens
with field of view 183◦ is equivalent to using camera with
resolution 300×300 pxl and standard lens with field of view
45◦ in the sense of ratio pxl/angle. Our method shows that
very accurate reconstruction of camera positions and accu-
rate reconstruction of scene points can be obtained with rel-
atively small (4 times lower) resolution in comparison to
a standard camera. The accuracy of reconstruction of scene
points can be improved by using a camera with a higher res-
olution, e.g. Canon EOS–1Ds as in first two experiments.
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