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ABSTRACT

This paper proposes a method for outlier detection in recovery of projective shape and motion from multiple images
by factorization of a matrix containing the images of all scene points. Compared to previous methods, this method can
handle perspective views, occlusions, and outliers in image correspondences jointly. The main novelty of this paper is the
method for outlier detection whereas the proper reconstruction was described in (Martinec and Pajdla, 2002). In this work
we assume that the amount of inliers is significantly larger than the amount of outliers. The main idea is that minimal
configurations of points in triples of images are sufficient to validate inliers reliably. REnsAC paradigm is used.

Trifocal tensors are computed from randomly selected minimal n-tuples of points in triples of images. After the tensor
estimation, the number of points consistent with the tensor is counted. If there are sufficiently enough consistent points,
those not used to estimate the trif. tensor receive one positive vote. The voting is repeated until points in the measurement
matrix are sufficiently sampled. The points that obtain zero or a very small number of votes are rejected as outliers. Inliers
are used by the method described in (Martinec and Pajdla, 2002) to obtain a projective reconstruction. The set of inliers
can be further enlarged by an iterative process. The new method is demonstrated here by experiments with laboratory and
outdoor image sets.

1 INTRODUCTION i.e. mismatches, in image measurements. The goal is to
reject outliers and to recover 3D structure (point locations)
Tomasi & Kanade (Tomasi and Kanade, 1992) developed and motion (camera locations) from the remaining image
factorization method of the measurement matrix for sceneneasurements. No camera calibration or additional 3D in-
reconstruction with an orthographic camera. This methodormation will be assumed, so it will be possible to recon-
as well as Jacobs’ method (Jacobs, 1997) can handle ostruct the scene up to a projective transformation of the 3D
clusions. Sturm and Triggs (Sturm and Triggs, 1996) exspace.
tended this method from affine to perspective projections )
but without occlusions. Martinec & Pajdla (Martinec and L€t X, be the unknown homogeneous coordinate vectors
Pajdla, 2002) solved reconstruction with both perspectiv@f the 3D pointsp* the unknowr x 4 projection matri-
projections and occlusions. Heyden (Huynh and Heyder£es: aod(; the r’oeasured homogeneous coo_rdlnate vectors
2001) presented a reconstruction method from affine im®f the image points, where= 1, .., m labels images and
ages with outliers but occlusions are not handled. Recentl§ = 1;- -, 7 labels points. Due to occlusions,, are un-
he extended the method into the perspective case (Heyddflown for some andp.

2002). We present a novel method for outlier detection S&he basic image projection equation says ﬂn@are the
that reconstruction from perspective images is solved when . . . .
rojections ofX,, up to unknown scale factors,, which

occlusions and outliers are present jointly. Our method’" U
is independent of image ordering and treats all data uni\!vIII be called projectivg depths

formly. No six-tuple of points seen in all images is needed. A;,x; = PiXp

After problem formulation, philosophy of the new algo- The complete set ofimage projections can be gathered into
rithm comes in Section 3, detailed explanation in Sec. & Matrix equation:

and 5. Experiments and summary are in Sec. 6 and 7. AMx!l o Alxl 0 ALx )
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Suppose a set of 3D points and that some of them are P
visible in m perspective images. There may be outliers, R

*This research was supported by the grants GACR 102/01/0971\(““ere marksx stand for unkno_Wn elements which could
MSMT KONTAKT 2001/09, and CTU 0209313. Andrew Zisserman Not be measured due to occlusickgndP stand for struc-
from the University of Oxford kindly provided the Dinosaur data, Marc tyre and motion, respectively. TBen x n matrix

Pollefeys from K.U.Leuven the Temple and the Castle dataj€@hum [ i

from the Czech Technical University in Prague provided the routine for XP]i:l“m’pzl"” will be called themeasurement matrix

the trifocal tensor estimation, and TénWerner from the University of  Shortly MM. MM may have (and in most cases does have)
Oxford provided the routine for the bundle adjustment. some missing elements and outliers.



3 THE MAIN IDEA OF THE NEW OUTLIER DE- suporting them. Image points with high number of votes
TECTION ALGORITHM are labeled as tentative inliers and joined into sub-tracks,
points with low number of votes are labeled as tentative
In the classicaRANSAC paradigm, a “good” basis deter- qutliers. The .reconstructi.on is computfed from t_entativg in-
mining the structure of as much data as possible is searchdirs by (Martinec and Pajdla, 2002) with tentative outliers
for. Because MM with missing data may not contain anyégarded as the missing data. The reconstrugioRZ;,
complete column at all, the standard concept of a basis déXp},—1, @s a whole, is good if there is enough correctly
termining the structure of the whole remaining data cannoteprojected world pointX,, by all camera$" into the im-
be used. Hierarchical method (Fitzgibbon and Zissermar@ges. If the reconstruction is bad, voting is continued or
1998) builds a reconstruction from image triplets using tri-repeated until a good reconstruction is found.
focal tensors while image points inconsistent with the ten- L . . . .
sors are rejected as outliers. Triplets are joined into suplentative |n.I|ers may be cpns!st_entio_r Inconsistent W'.th the
sequences which can be further hierarchically registred intnaaconstrljlctlon. A tentgmve inliex;, IS c.on'5|stent 'f, its
longer sub-sequences. Compared to this, we suggest rld pom_tX,, projects into all ‘ef“a“"? inliers of thih
method which does not build on hierarchical approach. A”track pre<_:|se_ly _eno_ugh. , Othervw_se_, since at least one of
camera matrices are estimated in one step from some inr1he tentative |r_1I|ers n th@t_h track is _|ncon5|stent_an(_j Itis
age points consistent with some trifocal tensors. FurtheP©t known which of thgm IS the oujher, all tentative inliers
iterative process ensures a large set of inliers (image med! the.track are tent_anyely Inconsistent and are marked as
surements consistent with the cameras) to be found. tentat!ve outl;eré. Slmllarly, itis deswaple to fm.d Wh'c.h
tentative outliers are consistent and which are inconsistent

_with the reconstruction. Some of them may be the real out-
liers, others did not get enough votes because they have not
been sampled.

In this work we assume that the amount of inliers is sig
nificantly larger than the amount of outliers. The main
idea is that minimal configurations of points in triples of

images are sufficient to validate inliers reliably. However,|rnage points of the two cases can be validated using the
for large scenes, it is computationally infeasible to searchynown camera matrices If a track is consistent witie

for trifocal tensors among many triples of images whichi, 5 triple? of images, it is consistent with the reconstruc-
Would_ validate all inliers. Therefore,_ a_mother valld_atl_ontiOn in the triple. Overlaping consistent triples of images
technique was proposed. When sufficiently many inliergan pe joined into a sub-track. The sub-track, as a whole,
are validated using trifocal tensors, it is possible 10 estiyay pe inconsistent with the reconstruction due to noise in
mate reconstruction using (Martinec and Pajdla, 2002) anfhe gata (only some of its triples were verified to be con-
check which image measurements are consistent with thgsient). The consistent part of the sub-track can be found
reconstruction. It turned out that a combination of the WOpy reconstructing theth world point from the sub-track
ab_ove techniq_ues validates inliers reliably and is COMPUzng reprojecting it into the images. The image measure-
tationally feasible. Moreover, when the second techniquénents consistent with the reconstruction are used as the

is iterated, a better reconstruction is found and the set qbnative inliers in the next iteration of reconstructing the

inliers increases. whole scene and validatirfigAfter convergence, tentative

] ) __inliers are denoted as inliers and tentative outliers as out-
The advantages conferred by proceeding with exploitingiers - Algorithm for finding the initial set of tentative in-

latently all known data at once are the following. There isjiers js summarized in Algorithm 1 while the whole outlier

no dependancy on a good estimate from the early framegeatection in Algorithm 2. The following two sections ex-
of the sequence, as opposed to a sequenctial approagpain some steps in more detail.

There is no difference between sequence and wide base-
line stereo.
4 VOTING BY TRIFOCAL TENSORS

In sequences, a mismatch may cause that a track, i.e. im- o o . o

age measurements in a correspondence, consists in A" validating the inliers by trifocal tensorg,, it is cru-
from two (or more) different sub-tracks: one till the mis- ¢idl to validate only those points which were not used to
match and the second one from the mismatch on. ConsecGPMPUteZ . The reason is that the probability that a con-
tively, each of the sub-track will be validated but the wholet@minated7” validates another outlier is very small (with
track is wrong and is to cause large errors in subsequent r@SSumption of independent outliers). On the other hand, a
construction algorithm. The solution inheres in validating? computed from a contaminated 6-tuple often validates
sub-tracks of length at least three (which can be done udl the six points in the 6-tuple.

ing trifocal tensors) and joining the overlapping sub-tracks *This is done only to speed up performance of the algorithm. Alterna-
(overlap at one image is sufficient), which is very Simp|etively, th(_e whole MM could be marked as tentative outliers and validated
cc_)mpared to computjng homOgr.aphieS in (.FitZgibbon .andls gSZfrn(l’:)ci?I(ljaltoeerlalso used but the test is less robust in the presence of
Zisserman, 1998). Since validating an outlier by the trifo-gjse.
cal tensor is very unlikely, it is unlikely as well that non-  3The whole sub-track may be passed as the tentative inliers into the

continuous sub-tracks will join in such process. next iteration but it increases the risk of incorporating an outlier into the

set of tentative inliers. On the other hand, (i) it may lead to finding a better

. . local minimum (it avoids stacking in some set of inliers which causes that
Figure 1 shows the scheme of the whole algorithm. Meagso very “different” inliers may be validated) and (i) it speeds up the

sured data in MM are given votes from trifocal tensorsconvergence of the algorithm.
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Figure 1: Scheme of outlier detection algorithm
4.1 3D Point Estimation

3D points can be estimated from camera matrices and MM
To make expresions shorter, index sets will be used (in the
manner as in Matlab language). The index set in super-

script and subscript, resp., will denote the choice of rows

and columns, resp. Let index dedenote a set of images. | Let p denote the size of the minimal consistent set, u >

The following method was used to reconstruct scene poirté

using camera matrices.
1. Estimate deptt\), using camera matricés, i € i, by
solving a system of linear equations.

2. Find X,, as the coefficients of the linear combination
of columns off* in approximation ok, by P* where

i1 i1 i1
P AP X,
i i . . .
P' = : R, = : yi={i,. .0}
PU i
p%p

3. (optional) Tune poinX,, by a non-linear least-squares
bundle adjustment.

4.2 Track Update

It is desirable to check wether some tentative outlier be
came consistent with sinceP was changed from the last
iteration. If a columnp contains some tentative outlier,
do the following. For all pairs/triples of images,of the
pth correspondenéalo the following. Estimate the world
point X,, usingP:. If repr. errors of the three image points

are below a given threshold, add a new sub-track if the 4.

triple does not overlap with some formerly validated sub
track or join the overlapping sub-track(s).

5 VALIDATION BY CONSISTENCY WITH RECON-
STRUCTION

. Choose randomly a triple of images so that there are

at least 1 common points in these images. Let i =
{i,7,k} denote the index set of the chosen images.
Let p denote the index set of the points visible in
images i.

. In images i, choose randomly 6 common points in

a non-degenerate configuration and estimate 7 and
camera matrices P*, ¢ € i (Hartley and Zisserman,
2000). There will be one or three real solutions.

. Finding the consistent set with7 .

(a) ]SEstimatiz1 ?D points X, p € p, using P! as in
ection 4.1.

(b) Calculate the reprojection errors as
ep = max;c; d(x},P'X,)

(c) Compute the number of inliers consistent with
P' (7) by the number of correspondences for
which e, < 1.

(d) If there are three real solutions for 7 the num-
ber of inliers is computed for each solution, and
the solution with most inliers retained.

Voting. If size of the consistent set is at least p,
then its image points except those used to estimate
T are (i) given a vote and (ii) used for updating the
tracks (see Section 4.2).

Repeat steps 1-4 until image points are sufficiently sam-
pled. Image points with high number of votes are tenta-

tive inliers, other points are tentative outliers.

Algorithm 1: Algorithm for finding the initial set of ten-
tative inliers in MM using trifocal tensors by voting

Image points consistent withcan be found in the follow-
ing way. 3D pointX,, is found using inliers ifx;, . . .xg”b]T
as in Section 4.1. Image points consistent \pitlre those
whose reprojection error is below a given threshold, i.e.
el, = d(x.,P'X,) < t (whered(x,y) is the Euclidean
distance between the pointsandy).

4At maximum (") combinations. Alternatively, choose a pair/triple
of imagesj, in random.



1. Initial set of inliers. Find the initial set of tentative
inliers in MM using validation by 7s (Alg. 1) that
is sufficiently big to find all camera matrices using
method (Martinec and Pajdla, 2002). Let T denote
the validated sub-tracks of MM given as output.

2. Reconstruction. Set T' = T. Create M’ from MM
by splitting sub-tracks T’ (see Section 5.1). Find P,
X from tentative inliers in M using (Martinec and
Pajdla, 2002).

3. Validation of tentative inliers. Make tentative in-

Temple (Leuven)
Corresp. / outl. de
Depth estimation

5images [86%591]
.Harris' operator / 2
sequence

All/ cont. / p. val. tracks

284/20/6

Mean error / outl. [pxI]

0.27 /13.64
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Castle (Leuven)
Corresp. / outl. de
Depth estimation

22 images [768576]
.Harris’ operator / 1
sequence

B S —

1822 /716 / 33¢
0.22 /11.97

All / cont. / p. val. tracks
Mean error / outl. [pxI]

liers from the image points in columns p consistent
with P, X, in all elements.

4. Validation of tentative outliers. In other columns,
update T using P (see Sec. 4.2). Make tentative in-
liers from the validated sub-tracks of T.

Dinosaur (Oxford)
Corresp. / outl. de
Depth estimation
All/ cont. / p. val. tracks 2683 / 1326 / 581
Mean error / outl. [pxI] 0.39 /0.64

36 images [72@576]
.Harris’ operator / 1
sequence

5. Iteration. If any new image point consistent with P
appeared, go to Step 2.

Image points consistent with P are inliers.

Algorithm 2: Outlier Detection Algorithm

%

5.1 Splitting Tracks

If some track in MM consists of more sub-tracks, only the
first sub-track is left and other sub-tracks are added as sif- SUMMARY AND FUTURE WORK

gle columns to MM. . .
A new method for outlier detection was developed. Tests

on laboratory and outdoor scenes showed its applicability.
In the initial inlier detection step, method (Schaffalitzky et
al., 2000) could be used. Sequential factorization of matrix
For each experiment, one image, an error table, and thecould help to improve convergence.

structure of MM are provided. The table includes corre-

spondence detection, accuracy for outlier detection, NU"REFERENCES

ber of all, contaminated and partially validated tracks, the

chosen strategy for depth estimation (see (Martinec and P&itzgibbon, A. W. and Zisserman, A., 1998. Automatic
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