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Abstract

This paper proposes a method for recovery of projective shape and motion from
multiple images by factorization of a matrix containing the images of all scene
points. Compared to previous methods, this method can handle perspective views
and occlusions jointly. The projective depths of image points are estimated by the
method of Sturm & Triggs [11] using epipolar geometry. Occlusions are solved
by the extension of the method by Jacobs [8] for filling of missing data. This
extension can exploit the geometry of perspective camera so that both points with
known and unknown projective depths are used. Many ways of combining the two
methods exist, and therefore several of them have been examined and the one with
the best results is presented. The new method gives accurate results in practical
situations, as demonstrated here with a series of experiments on laboratory and
outdoor image sets. It becomes clear that the method is particularly suited for
wide base-line multiple view stereo.

Keywords: projective reconstruction, structure from motion, wide base-line
stereo, factorization

1 Introduction

In the past geometric and algebraic relations among uncalibrated views up to
four in number have been described [5]. Various algorithms for scene reconstruc-
tion with both orthographic and perspective camera have been proposed [5,
12, 8, 11, 6, 9, 13, 3, 10]. The reconstruction problem from orthographic camera is
conceptually satisfactorily solved but this could not be claimed for the case of a
perspective camera. The biggest problem that remained to be solved was dealing
consistently with scene occlusions.
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Table 1. Comparison of some 3D reconstruction methods. Lexicographical ordering
was used so that (i) the importance of a criterion decreases from the first to the last
column and (ii) the quality of the method decreases from top to down

Algorithm views camera occlusions
privileged

data
depends on
im. ordering

the new algorithm N persp. yes no no
Fitzgibbon & Zisserman [3] N persp. yes no yes
Avidan & Shashua [10] N persp. yes no yes
Urban et al. [13] N persp. yes central view no
Heyden [6] N persp. no no no
Mahamud & Hebert [9] N persp. no weak persp. no
Sturm & Triggs [11] N persp. no no yes
Jacobs [8] N orthog. yes no no

Tomasi & Kanade [12] N orthog. yes
initial

submatrix
no

Hartley & Zisserman [5] 2,3,4
orthog.
persp.

no no no

This paper offers a linear method which extends and suitably combines pre-
vious methods so that the reconstruction in an entirely general situation, i.e.
many images with perspective camera and occlusions, is possible. A review of
previous works follows.

The situation is similar for two, three, and four uncalibrated images. 3D
structure of a scene can be recovered up to an unknown projective transforma-
tion, where the camera geometry can be represented by the fundamental matrix,
the trifocal, and the quadrifocal tensor respectively [5].

For any number of images, image coordinates of the projections of 3D points
can be combined into a so called measurement matrix. Tomasi and Kanade [12]
developed a factorization method of the measurement matrix for scene recon-
struction with an orthographic camera and Sturm and Triggs [11] extended this
method from affine to perspective projections. Heyden’s method [6] uses a dif-
ferent approach. It relies only on subspace methods instead of multilinear con-
straints. Similarly, Mahamud & Hebert proposed a method [9], which computes
projective depths iteratively but it can only be used for weak perspective or for
full perspective with a good initial depth estimate.

Occlusions present a significant problem for reconstruction. The above men-
tioned Tomasi and Kanade’s method solves this problem under the orthographic
projection but the result depends on the choice of some initial submatrix of the
measurement matrix. The method is iterative and errors may increase gradually
with the number of iterations. Jacobs’ method [8] improves the above approach
so that no initial submatrix is needed. He combines constraints on the recon-
struction derived from small submatrices of the full measurement matrix. It
treats all data uniformly and is independent of image ordering.



Under perspective projection, the occlusion problem has not yet been gener-
ally solved. Method [13] by Urban et al. is dependent on the choice of a central
image, which is combined with other images in a so called “cake” configuration.
Only points whose projections are contained in the central image can be recon-
structed. Method [3] by Fitzgibbon & Zisserman and [10] by Avidan & Shashua
compute reconstruction from a sequence of images using trifocal tensors and
fundamental matrices. Subsequent images are taken one after another and used
to extend and improve actual reconstruction. Table 1 summarizes the differences
among the mentioned methods.

Jacobs [8] solves reconstruction with occlusions for orthographic camera,
Sturm & Triggs [11] solve reconstruction without occlusions for perspective cam-
era. We present a novel method that builds on these two methods so that scene
reconstruction from many perspective images with occlusions is obtained. Our
method is independent of image ordering and treats all data uniformly up to a
certain level of missing data. Above this level, the reconstruction process may
prefer some data depending on the method of computing the projective depths.

The paper is organized as follows. The reconstruction problem is formulated
in Section 2. In Section 3.1 and 3.2, algorithms [11] and [8] are reviewed, respec-
tively. In 3.3, the new filling algorithm is presented. In 3.4, the new reconstruction
method is proposed. Experiments with artificial and real data are presented in
sections 5 and 6. Section 7 gives suggestions for future work.

2 Problem Formulation

Suppose a set of n 3D points and that some of them are visible in m perspec-
tive images. The goal is to recover 3D structure (point locations) and motion
(camera locations) from the image measurements. This recovery will be called
scene reconstruction. No camera calibration or additional 3D information will
be assumed, so it will be possible to reconstruct the scene up to a projective
transformation of the 3D space.

Let Xp be the unknown homogeneous coordinate vectors of the 3D points,
Pi the unknown 3 × 4 projection matrices, and xi

p the measured homogeneous
coordinate vectors of the image points, where i = 1, . . , m labels images and
p = 1, . . , n labels points. Due to occlusions, xi

p are unknown for some i and p.
The basic image projection equation says that xi

p are the projections of Xp

up to unknown scale factors λi
p, which will be called (projective) depths:

λi
px

i
p = PiXp

The complete set of image projections can be gathered into a matrix equation:
λ1

1x
1
1 λ1

2x
1
2 . . . λ1

nx1
n

× λ2
2x

2
2 . . . ×

...
. . .

...
λm

1 xm
1 × . . . λm

n xm
n


︸ ︷︷ ︸

R

=

 P1

...
Pm


︸ ︷︷ ︸

P

[X1 . . .Xn]︸ ︷︷ ︸
X



where marks × stand for unknown elements which could not be measured due
to occlusions, X and P stand for structure and motion, respectively. The 3m× n
matrix [xi

p]i=1..m,p=1..n will be called the measurement matrix whereas R will be
called the partially rescaled measurement matrix, shortly PRMM, because R will
be used even with some unknown depths. Both measurement matrix and PRMM
may have (and in most cases do have) some missing elements.

3 The Main Idea of the New Reconstruction Algorithm

A complete rescaled measurement matrix has rank four and therefore a projective
reconstruction can be obtained by its factorization. However, from measurements
in perspective images with occlusions, we can only compose a measurement ma-
trix which is neither complete nor rescaled. When it is at all possible to compute
projective depths of some known points in R, e.g. via multi-view constraints,
some missing elements of R can often be filled using the knowledge that every
five columns of complete rescaled R are linearly dependent.

It would be ideal to first compute the projective depths of all known points
in R and then to fill all the missing elements of R by finding a complete matrix
of rank four that would be equal (or as close as possible) to the rescaled R
in all elements where R is known. Such a two-step algorithm is almost the ideal
linearized reconstruction algorithm, which uses all data and has a good statistical
behavior. We have found that many image sets, in particular those resulting from
wide base-line stereo, can be reconstructed in such two steps.

Of course, there are image sets, e.g. sets with the structure of missing data
on the borderline of reconstructibility or long sequences with very factionalized
tracks, which cannot be solved in the above two steps. Instead, the two steps
have to be repeated while the measurement matrix R is not complete. If the cor-
respondences between the images are such that the measurement matrix is large
and diagonally dominant, then it is possible to use another reconstruction tech-
nique, e.g. to fuse partial consecutive reconstructions [3, 10]. However, if there is
no clear sequence of images or central image like in [13], the proposed algorithm
has a clear advantage. It can handle arbitrary scenes in pseudo-optimal manner
without a priori preferring any particular image. It provides a unique solution
and thus is suited for the initialization of bundle adjustment optimizations.

In what follows, we shall describe the two steps of the algorithm. Let us first
review the two steps we build on and their respective extensions. Later we will
describe how to combine the two steps.

3.1 Estimating the Projective Depths

Many works dealt with estimating the projective depths. In this work, we used
Sturm & Triggs’ method [11] exploiting epipolar geometry but other methods,
e.g. [6, 9, 5], can be applied also. The method [11] was proposed in two alterna-
tives. The alternative with a central image is more appropriate for wide base-
line stereo while the alternative with a sequence is more appropriate for video-
sequences. The former will be denoted as ωcent,c where c denotes the number



1. Set λj
p = 1 for all p corresponding to known points xj

p in view j ={
1 : for ωseq

c : for ωcent,c

2. For
{

j = 1 . . m− 1, i = j + 1 : for ωseq

j = c, i 6= j : for ωcent,c
do the following. If images i and j

have enough points in common to compute a fundamental matrix uniquelya then
compute their fundamental matrix Fij , epipole eij , and depths λi

p according to

λi
p =

(eij ∧ xi
p) · (Fijxj

p)

‖eij ∧ xi
p‖2

λj
p

if the right side of the equation is defined, where ∧ stands for the cross-product.

For ωseq: if the p-th track (p = 1 . . n) is discontinuous, start with j = b(p) where
b(p) denotes the initial image of the longest continuous subtrack of the p-th track.

a See Section 3.4.

Algorithm 1: Estimating the depths: alternatives ωseq and ωcent,c

of a central image while the latter will be denoted as ωseq. Thus, we have alto-
gether the totality Ω = {ωseq, ωcent,1 . . . ωcent,m} of alternatives for computing
the projective depths. Also, the method from [11] has to be furthermore slightly
modified on account of missing data. The complete algorithm is summarized in
Algorithm 1. The p-th track there denotes a subsequence of known points in
sequence x1

p . . .xm
p .

3.2 Filling of Missing Elements in R

Filling of missing data was first realized by Tomasi & Kanade [12] for ortho-
graphic camera. D. Jacobs [8] improved their method and we use our extension
of his method for the perspective case. Often, not all depths can be computed
because of missing data. Therefore, we extend the method from [8] so that also
points with unknown depths are exploited. Moreover, the extension is indepen-
dent of how depths are estimated and thus any method for estimating the depths
could be used. Before describing our modification for the perspective camera, the
original Jacobs’ algorithm for the orthographic case has to be explained.

D. Jacobs treated the problem of missing elements in a matrix as fitting an
unknown matrix of a certain rank to an incomplete noisy matrix resulting from
measurements in images. Assume noiseless measurements for a while to make the
explanation simpler. Assuming perspective images, an unknown complete 3m×n
matrix R̃ of rank 4 is fitted to PRMM R. Technically, a basis of the linear vector
space that is spanned by the columns of R̃ is searched for. Thus, when there are
4 complete linearly independent columns in R, then they form the desired basis.
When no such 4-tuple of columns exists, the basis has to be constructed from
incomplete columns. Fortunately, some 4-tuples of incomplete columns provide
constraints on the basis and a sufficient number of such constraints determine it.



Example: R =

 4 6
2 ×
× 3

 , for rank R = 1 instead of rank R = 4
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2
×

 . . . B1 = Span(

 4 0
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0 1
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×
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4 6
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2 3
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Fig. 1. Forming constraints on the basis and filling the matrix. For R is of rank 1,
constraints on B are formed by single columns

Let us explain what we mean by saying that an incomplete column c of
R spans (generates) a subspace. Every complete column of R generates a one-
dimensional subspace of R3m. Thus, an incomplete c generates a subspace V ,
as the smallest linear space containing all one-dimensional subspaces generated
by c after replacing unknown elements by some arbitrary real numbers. Linear
subspaces form a complete lattice [2] and therefore such smallest linear space V
exists. It is a subspace of R3m and equals the linear hull of all one-dimensional
subspaces. The generators of V can be obtained by constructing the column
containing the known elements of c and zeros instead of the unknown ones and
augmenting it with the standard basis spanning the dimensions of the unknown
elements (see Fig. 1 and the example in Section 3.3).

Let the space generated by the columns of R̃ be denoted by B. Let Bt denotes
the span of the t-th 4-tuple of columns of R which are linearly independent in
coordinates known in all four columns. B is included in each Bt and thus also



in their intersection i.e. B ⊆
⋂

t∈T Bt, where T is some set of indices. When the
intersection is 4D, B is known exactly. If it is of a higher dimension, only an
upper bound on B is known and more constraints from 4-tuples must be added.
Any column in R̃ is a linear combination of vectors of a basis of R̃. Thus, having
a basis B of R̃, any1 incomplete column c in R can be completed by finding the
vector c̃ generated by B which equals c in the elements where c was known in R
(see Fig. 1).

Linear independency of the 4-tuple of columns is crucial to obtain a valid
constraint on the basis. Consider, e.g., a 4-tuple consisting of four equal columns,
thus spanning only a 1D space. Even if three coordinates in one of its columns are
made unknown, and thus a 4D space is spanned, B does not have to be included
in the span. A row with some missing coordinates can be ignored because the
entire corresponding dimension is spanned and the constraint on B is always
satisfied in the dimension, meaning such a row contains no information. This is
the reason to use just the 4-tuples of columns linearly independent in coordinates
known in all four columns.

Because of noise in real data, the intersection
⋂

t∈T Bt quickly becomes
empty. This is why B is searched for as the closest 4D space to spaces Bt in
the sense of the minimal sum of square differences of known elements. Denot-
ing complement of a linear vector space by ⊥,

⋂
t∈T Bt can be expressed ac-

cording to the well known De Morgan rule as (Spant∈TB⊥t )⊥. The generators
of B⊥t can be found as B⊥t = u(:, d + 1 : end), where [u, s, v] = svd(Bt) and
d is the dimension of Bt. Spant∈TB⊥t , where T is of cardinality z, is gener-
ated by [B⊥1 B

⊥
2 . . . B⊥z ]. (Spant∈TB⊥t )⊥ is generated by u(:, end− 3 : end), where

[u, s, v] = svd([B⊥1 B
⊥
2 . . . B⊥z ]).

3.3 Filling of Missing Elements for Perspective Cameras

Jacobs’ method [8] cannot use image points with unknown depths. But, PRMM
constructed from measurements in perspective images often has many such
points where the corresponding depths cannot be computed. Therefore, we ex-
tended the method to exploit also points with unknown depths. It brings two
advantages: (i) because the actual iteration of the two-step algorithm exploits
more information, the number of iterations may decrease and consequently more
accurate results may be obtained; (ii) it is possible to reconstruct more scene con-
figurations. See Section 8 in [1] for more details about this. It is important that
the proposed extension is still a linear method as was the Jacobs’ method [8].

Let us first explain the extension for two images. Suppose that λi
p and xi

p

are known for i = 1, 2, and for p = 1 . . 4 except λ2
4. Then, consider the first four

columns of R to be the t-th 4-tuple of columns, At. A new matrix Bt, whose span
will be denoted by Bt, can be defined using known elements of At as

At =
[

λ1
1x

1
1 λ1

2x
1
2 λ1

3x
1
3 λ1

4x
1
4

λ2
1x

2
1 λ2

2x
2
2 λ2

3x
2
3 ? x2

4

]
−→ Bt =

[
λ1

1x
1
1 λ1

2x
1
2 λ1

3x
1
3 λ1

4x
1
4 0

λ2
1x

2
1 λ2

2x
2
2 λ2

3x
2
3 0 x2

4

]
1 containing at least four known elements, which in practice means six elements re-

sulting from two known points



It can be proved (see Corollary 1 in Appendix A in [1]) that if Bt is of full rank
(i.e. five here) then B ⊆ Span(Bt), which is exactly the constraint on B.

In a general situation there are also some missing elements in R. Then, the
matrix Bt is constructed from the t-th 4-tuple At of columns of R as follows:

1. Set Bt to At.
2. Replace all unknown points and points with unknown depth by zero in Bt.
3. For each unknown depth λi

p in At, add a column with xi
p and zeros everywhere

else to Bt.
4. For each triple of rows in At containing some unknown point, add to Bt the

standard basis spanning the dimensions of the unknown point.

The following example demonstrates the construction of Bt from a 4-tuple At:

At =
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1
4
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2
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2
2 λ2

3x
2
3 λ2

4x
2
4
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1x

3
1 λ3

2x
3
2 λ3

3x
3
3 ×

 2−→
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2x

1
2 λ1

3x
1
3 λ1

4x
1
4

λ2
1x

2
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2x
2
2 λ2

3x
2
3 λ2

4x
2
4

λ3
1x

3
1 λ3

2x
3
2 λ3

3x
3
3 0


↓3
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︷ ︸︸ ︷
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3
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1
0
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0
1
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2 λ1
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2
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2
2 λ2
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If Bt is of full rank, its span Bt includes B (this can be proved by induction

from Corollary 1 in Appendix A in [1]). By including also image points with
unknown projective depths the spaces Bt spanned by 4-tuples of columns become
smaller, thus solving the complete problem becomes more efficient.

It can be seen that the concept of generating constraints on the basis for
the orthographic case is only a special case of generating constraints for the
perspective case. The former is equivalent to the latter having all depths set
to the same number thus corresponding to the perspective camera with the
projection center at infinity and looking at a finite scene.

3.4 Combining the Filling Method with Estimating the Depths

Due to occlusions, the computation of projective depths can be carried out in
various ways depending on which depths are computed first and if and how
those already computed are used to compute the others. One way of depth
estimation will be called a strategy. Depending on the chosen strategy, different
subsets of depths are computed and different submatrices of PRMM are filled.
It may happen when some strategy exploiting e.g. epipolar geometry of some
pair of images is used that the fundamental matrix cannot be computed due
to occlusions. Consequently, depths needed to form a constraint on the basis of
PRMM in one of the images cannot be estimated, thus the missing data in the
image cannot be filled and the two steps of depth estimation and filling has to
be repeated.

For accurate data, all strategies should be equivalent. It is not so if the data is
noisy. In such case, the task is to choose the strategy which results in the smallest



error. It would be unrealistically costly to compute all possibilities (although
there is “only” a finite number of them) and to choose the best one. Fortunately,
we do not have to compute all of them in order to find some good one. From
the structure of missing data, it is possible to predict a good strategy for depth
estimation that results in a good reconstruction. Some criterion deciding which
strategy is good is needed. For scenes reconstructible in more steps, such criterion
also determines which subset of depths is better to be computed first.

The following two observations have been made. First, the more iterations
are performed, the less accurate results are obtained because the error from the
former iteration spreads in subsequent iterations as was also mentioned in [8].
Secondly, unknown elements should not be computed from fewer data when they
can be computed from more data, and thus more accurately due to the law of
big numbers and supposition of random noise. Both these observations support
the following.

Principle 1 The more image points that are filled in one step, the smaller the
expected error.

This principle leads to a pseudo-optimal number of iterations that need to be
performed.2 Practically, however, it is not crucial problem that such obtained
strategy is only pseudo-optimal because, as will be seen later, it is possible to
realize Principle 1 so that, for many scenes, only one iteration is performed. The
following proposition holds.

Proposition 1 The more depths known before the filling, the smaller the ex-
pected error.

Proof of Proposition 1 inheres in our extension of Jacob’s method (see Ap-
pendix B in [1]). Usage of Principle 1 and Proposition 1 in order of their desig-
nation proved to be a good criterion. We choose the set of strategies which fill
the most points, and from this set, we choose those which scale the most points.
From the resulting set, an arbitrary strategy can be used.

The criterion will now be described formally. Let ω denote some strategy
for estimating the depths and Ω denote some set of strategies. Let F(ω) denote
the predicted number of newly filled unknown image points during one iteration
when ω is used. The strategy, for which F(ω) is maximal, is the best strategy
according to Principle 1. More such strategies often exist. Let S(ω) denote the
predicted number of estimated depths when ω is used. According to Proposi-
tion 1, S(ω) is maximal for the best strategy. The complete new method for
scene reconstruction is summarized in Algorithm 2.

The usefulness of the concept of predictor functions F ,S : Ω −→ 0 . . mn
consists in their ability to be evaluated without neither estimating the depths
2 An optimal strategy would have to be searched for as the shortest branch in the

tree graph of all partial solutions. Partial solutions can be ordered into a tree graph.
Edges in this graph correspond to chosen strategies and vertices correspond to the
partial solutions obtained after one iteration. The root of the tree corresponds to
the initial PRMM.



1. Estimate depths using an arbitrary strategy ω∗ ∈ Ω∗ where

ΩF =
{

ω ∈ Ω
∣∣∣ F(ω) = max

τ∈Ω
F(τ)

}
Ω∗ =

{
ω ∈ ΩF

∣∣∣ S(ω) = max
τ∈ΩF

S(τ)
}

2. Fill the missing data.

Repeat steps 1. and 2. until R is complete or no data can be filled in. Then factorize
a maximal complete submatrix of R.

Algorithm 2: Scene reconstruction using a set of strategies for estimating the
depths Ω

nor data filling. The knowledge of which image points are known or unknown is
the only information for the evaluation of F and S. It is very simple (and fast) but
it cannot detect degenerate configurations of points because, in fact, the multi-
view tensors are not computed. If it then, when the tensor is computed, turns
out that the configuration is degenerate, the second best strategy is used, etc.

To define F and S, a few symbols have to be introduced. Let logical variable
xi

p be true if and only if the image point xi
p is known. Let i and j be as in step

2 of Algorithm 1. Let Iij be true if and only if the data of image i can be used
by the filling method consistently with other images [11]. It is only possible if
i = j or if images i and j have enough (at least seven) points in common, which
are necessary to compute a fundamental matrix uniquely, thus

Iij ≡
∣∣{p | xi

p ∧ xj
p}

∣∣ ≥ 7 ∨ i = j (1)

The uniqueness is demanded for the depths consistency with other images. All
available points are used for the fundamental matrix estimation. (i) If there
are only 7 points, the 7-point algorithm [5] is performed. If it provides three real
solutions, the fundamental matrix is not unique. (ii) If there are 8 points or more,
the 8-point algorithm [5] is performed. In this case, degenerate configurations
can easily be detected.

The predictor functions depend on the way how projective depths are com-
puted. Let us first define the predictor functions for the alternative ωcent,c when
the depths are computed using a central image c. Let Pc

p be true if and only
if the p-th 3D point can be filled in by the filling method when depths were
estimated using strategy ωcent,c. To recover a 3D point uniquely from known
basis of PRMM, at least two its images are needed. Moreover, it can be proved
(see Theorem 4 in Appendix A in [1]) that at least two known depths in each
image are needed for the constraints on B. It means that Pc

p is true if and only
if the p-th 3D point is seen in at least 2 images and the corresponding funda-
mental matrices, which are needed for estimating at least some two depths in
the images, can be computed:

Pc
p ≡

∣∣{i | Iic ∧ xi
p}

∣∣ ≥ 2 (2)



Now, predictor functions F and S can be defined as follows

F(ωcent,c) =
∣∣{< i, p > | Iic ∧ Pc

p ∧ ¬xi
p}

∣∣
S(ωcent,c) =

∣∣{< i, p > | Iic ∧ Pc
p ∧ xi

p ∧ xc
p}

∣∣
Term Iic ∧ Pc

p says whether point xi
p can be reconstructed.

Similarly, the predictor functions for alternative ωseq when the depths are
computed for a sequence are defined as

Pp ≡
∣∣{i | xi

p}
∣∣ ≥ 2

F(ωseq) =
∣∣{< i, p > | Pp ∧ ¬xi

p}
∣∣

S(ωseq) =
∑

p∈1..n

maxarg
k∈b(p)..m

∧
i∈b(p)..k

xi
p (3)

Eq. (3) simply says that the points in the longest continuous subtracks have
known depths (See Algorithm 1).

4 Implementation Details

On account of good numerical conditioning, several normalizations of the data
and balancing similar to those in [11] need to be performed. Choosing of 4-
tuples of columns is implemented so that almost each chosen 4-tuple gives the
constraint on the basis of PRMM. This is aimed so that columns are chosen one
after another. The columns, which cannot provide the constraint with already
chosen ones, are temporarily removed from PRMM until the next 4-tuple is
chosen. By this way, a good efficiency is achieved.

5 Experiments with Artificial Scenes

For experiments with artificial scenes, a simulated scene with cubes was used.
The scene models a real scene, hence it represents a generic situation. Twenty
points in space were projected by perspective cameras into several images from
different locations and directions. Some image points were made unknown to
simulate scene occlusions, see the left-hand side of Experiment 1.

Points were taken out from the scene randomly but in a uniform fashion so
that, first, the numbers of missing points in each image differed maximally by
one, and secondly, the numbers of images of each point differed maximally by one.
Points were only removed as long as the whole scene could still be reconstructed.
The necessary condition for a complete reconstruction is that each image contains
at least 7 points and each point has at least 2 images (see (1) and (2)). The more
data available, the higher the percentage of missing data permissible. For this
specific experiment, i.e. 20 points in 5 images, 65 % of missing data is the upper
bound allowable to get a complete reconstruction. But because of randomly
spread holes in data, the actual level of the maximum amount of missing data



Experiment 1: Dependency of reprojection error on noise and missing data

for the complete reconstruction is lower. Experiment 1 shows the dependency of
the reprojection error of the reconstruction using Alg. 2 on noise and missing
data. Along the left horizontal axis, the amount of the missing data grows while
along the right horizontal axis, standard deviation of Gaussian noise of zero mean
value added to image points increases. The standard deviation of the added noise
as well as the reprojection error is displayed in percentage of the scene size.

If no noise is present, the reconstruction is precise. The reprojection error
grows linearly with noise with slope approximately equal one and is almost
constant in the direction of missing points up to the level of missing data above
which the reconstruction fails. To conclude, the new algorithm is accurate and
robust with respect to noise as well as missing data.

6 Experiments with Real Scenes

For each experiment, one image, an error table, and the structure of PRMM
are provided. The correspondences across the images have been detected either
manually or by the Harris interest operator [4]. Besides the scene name and point
detection, the table includes the chosen strategy for estimating the depths, the
amount of missing data, the number of images used, image sizes, the number of
known points in each image, and reprojection errors for our method Algorithm 2
and bundle adjustment initialized by the output of our method. The structure of
PRMM shows the exploitation of image points with known (”•”) and unknown
(”◦”) projective depths. Empty places stand for unknown points. All scenes have
been reconstructed in one iteration of Algorithm 2.



Method LM = linear method, BA = bundle adj.
Scene name House
Point detection manual
Depth estimation ωcent,1

Amount of missing data 47.83 %
LM Mean error per image point [pxl] 3.91
LM + BA 1.44

Image No. [2952×2003] 1 2 3 4 5 6 7 8 9 10
Number of corresp. 116 112 97 112 91 79 130 126 101 95

LM Maximal error [pxl] 11.0 36.6 12.1 9.3 25.8 15.5 13.6 8.9 14.7 13.4
LM + BA 4.3 6.6 4.5 4.4 5.8 8.3 7.5 6.3 10.7 10.1
LM Mean error 2.3 6.8 3.2 2.3 8.1 5.0 2.5 2.3 3.3 4.8
LM + BA 1.1 1.8 1.5 1.2 1.5 1.6 1.2 1.4 1.5 1.8

size = 10 × 203, ” ” missing (47.83 %), ”•” scaled (75.7 %), ”◦” not scaled (24.3 %)

Experiment 2: House

Method LM = linear method, BA = bundle adj.
Scene name Dinosaur (Oxford)
Point detection Harris’ operator
Depth estimation ωseq

Amount of missing data 90.84 %
LM Mean error per image point [pxl] 1.76
LM + BA 0.64

Image No. [720×576] 1 5 9 13 17 21 25 29 33 36
Number of corresp. 257 318 322 516 535 568 602 459 464 381

LM Maximal error [pxl] 18.4 16.3 29.5 56.4 46.9 73.9 44.1 28.5 19.4 33.9
LM + BA 10.9 12.7 7.8 41.5 25.7 13.1 13.4 17.3 17.9 21.4
LM Mean error 0.6 0.7 2.3 2.0 3.8 1.7 1.4 1.6 1.3 1.0
LM + BA 0.3 0.5 0.6 1.0 1.0 0.4 0.3 0.5 0.9 0.7

size = 36 × 4983, ” ” missing (90.84 %), ”•” scaled (100.0 %)

Experiment 3: Dinosaur (Oxford)



Method LM = linear method, BA = bundle adj.
Scene name Temple (Leuven)
Point detection Harris’ operator
Depth estimation ωseq

Amount of missing data 46.32 %
LM Mean error per image point [pxl] 0.49
LM + BA 0.23

Image No. [867×591] 1 2 3 4 5
Number of corresp. 456 456 297 374 285

LM Maximal error [pxl] 3.0 2.3 2.8 2.5 3.0
LM + BA 2.5 1.5 2.4 1.8 2.5
LM Mean error 0.4 0.5 0.6 0.5 0.5
LM + BA 0.3 0.2 0.2 0.2 0.2

size = 5 × 696, ” ” missing (46.32 %), ”•” scaled (100.0 %)

Experiment 4: Temple (Leuven)

The “House” scene (see Experiment 2) was captured on 10 images at high
resolution. Approximately 100 points were manually detected in each image.
Although 47.83 % data was missing, the reprojection error, given in pixels, is
low considering the image sizes. It can be seen that our algorithm could have
exploited all known data including 24.3 % unscaled points.

The “Dinosaur” scene (see Experiment 3) was captured on 36 images. Points
were detected automatically by the Harris operator. Although the amount of
missing data is high (90.84 %), the mean error per image point was lower because
of more precise point detection and since 100 % of points were scaled.

The data in Experiment 4 contained outliers, that were removed one after
another in the following manner. The scene was first reconstructed with all
the data including outliers. Then, the column of PRMM, which contained the
point with the highest reprojection error, was discarded. Afterwards, the scene
was again reconstructed, another column discarded etc. These two steps were
repeated till the highest reprojection error was significant. For the “Temple”
scene in Experiment 4, the threshold was set to 4 pixels which lead to discarding
23 out of 719 columns.

To conclude, the new algorithm is enough accurate on real scenes to provide
a good initial solution for bundle adjustment.

7 Summary and Conclusions

A new linear method for scene reconstruction has been proposed and tested on
artificial and real scenes. The method extends and suitably combines previous



methods so that the reconstruction in an entirely general situation, i.e. many
images with perspective camera and occlusions, is possible.

A new way of exploiting points with unknown depth was developed. Correct-
ness of this way was proved as well as its abilities and limitations were studied
in [1]. Its theoretical asset is the ability to reconstruct linearly some very small
scene configurations, which can be reconstructed by other methods only non-
linearly (see Theorem 3 in [1]), cannot be reconstructed at all (see Theorem 2
in [1]), or cannot exploit all known data (see Theorem 1 in [1]). Moreover, it
gives good results in practical situations as presented here.

The proposed method was intended to deal with several problems in 3D
reconstruction. These were the perspective projection, many images, and occlu-
sion. However, one problem was not taken into account explicitly and that is the
problem of outliers in correspondences. Although the method was not intended
to deal with outliers, it was observed that it can deal with them if they are few
compared to the number of inliers (see Experiment 4). To deal well with a bigger
amount of outliers, extension [7] of factorization handling outliers can be added.
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