

Structure from Perspective Images with Occlusions and Outliers

Daniel Martinec and Tomáš Pajdla

Center for Machine Perception Department of Cybernetics, Faculty Electrical Engineering Czech Technical University, Prague

Outline

m p 2/21

INTRODUCTION

Problem formulation, previous work, our contribution

PART I: No Outliers

- Used techniques
 - projective depth estimation
 - filling the missing elements
 - combination of the above
- Experiments

PART II: Outlier Detection

- New idea & algorithm
- Experiments

Goal

projective 3D-reconstruction from perspective images

with occlusions and outliers

Contribution

Previous & Related work

- [1] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. In *IJCV(9)2*, 1992.
- [2] D. Jacobs. Linear fitting with missing data: Applications to structure from motion and to characterizing intensity images. In *CVPR*, 1997.
- [3] P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective structure and motion. In *ECCV*, 1996.
- [4] D. Q. Huynh and A. Heyden. Outlier detection in video sequences under affine projection. In *CVPR*, 2001.

Main Contribution

- Generalization of Jacobs [2]
- combination with Sturm & Triggs [3]
- extension for outliers

to obtain 3D-reconstruction from perspective images with occlusions and outliers by factorization

PART I: No Outliers

Problem Formulation & Solution

New Algorithm

- 1. Estimate (some) λ_i^i using e.g. the epipolar geometry [3].
- 2. Fill \times using the extension of [2] for perspective cameras. Repeat 1 and 2 until R is complete.
- 3. *Factorize* [1] complete R.
- \longrightarrow Steps 1, 2: main components

Projective Depth Estimation (Sturm & Triggs [3])

uses fundamental matrices

$$\lambda_p^i = rac{(\mathrm{e}^{ij} \wedge \mathbf{x}_p^i) \cdot (\mathrm{F}^{ij} \ \mathbf{x}_p^j)}{\parallel \mathrm{e}^{ij} \wedge \mathbf{x}_p^i \parallel^2} \ \ \lambda_p^j$$

 $\land \ldots$ cross-product

Alternatives:

2. sequence

intersection of many $\mathcal{B}_k \longrightarrow \mathsf{fill} \; \mathtt{R}$

Heuristics Guiding the Filling of R

- many alternatives for computing λ_p^i
- hoise \longrightarrow alternatives not equivalent
- heuristics \longrightarrow good reconstruction

Proposition 1.

The repr. error decreases with the increase of the number of known λs .

very many data missing \longrightarrow depth estimation and filling must be repeated

Observation 1. The repr. error decreases with the increase of image points that are filled in one step.

Conclusion

Choose the alternative which fills the most data and using which the most λ s are computed.

Wide Base-Line Stereo

LM = Iin. method, BA = bundle adjustment

	Scene House	10 images [295	52×2003]
	Point detection	oints in space	
	Depth estimation	No. 1	
	47.83 %		
LM	Mean error per im	3.91	
LM + BA			1.44

203 points

10 images	
" ● "	$\lambda_p^i \leftarrow F(75.7\%), "\circ" \lambda_p^i \leftarrow B(24.3\%), "" occlusion$

Dense Sequence (Oxford)

Sc	cene Dinosaur (Oxford)	36 i	mages [720×576]	
Po	pint detection	Harr	ris' operator, 4983 points in space	a a a a a a a a a a a a a a a a a a a
De	epth estimation	sequ	ience	
Ar	mount of missing data		90.84 %	
LM M	ean error per image point	[pxl]	1.76	
LM + BA			0.64	

4983 points

PART II: Outlier Detection

Problem Formulation & Related Work

Perspective camera projection: λ

$$\overset{i}{p}\underbrace{\mathbf{x}_{p}^{i}}_{3\times1} = \underbrace{\mathbf{P}^{i}}_{3\times4}\underbrace{\mathbf{X}_{p}}_{4\times1}$$

 \mathbf{x}_p^i . . . outliers

Previous & Related Work

- D. Martinec and T. Pajdla. Structure from many perspective images with occlusions. In ECCV, 2002.
- [2] D. Q. Huynh and A. Heyden. Outlier detection in video sequences under affine projection. In *CVPR*, 2001.

Main Idea

Assumption

One dominant motion and random independent outliers

Main Idea

Minimal configurations of points in *triples* of images are sufficient to validate inliers reliably.

- ⇒ simplified RANSAC: not some large but some minimal support is sufficient
 - 1. Choose a triple of images and six common points in them in random $\longrightarrow \mathcal{T}$
 - 2. If \mathcal{T} consistent with enough (9) correspondences \longrightarrow inliers

Repeat 1 and 2 until there is enough inliers

 \longrightarrow estimate reconstruction using our method with occlusions [1] (outliers \rightarrow occlusions)

Outlier Detection Algorithm

- 1. Initial set of inliers. Using Ts.
- 2. **Reconstruction** from inliers using [1].
- 3. Check all data whether it is consistent with the reconstruction.

In each column, p, of R:

- (a) Random triple of image points, P $\longrightarrow \mathbf{X}_p$
- (b) If repr. error small \longrightarrow inliers

Repeat (a) and (b) until the column is sufficiently sampled

4. Iteration of Steps 2 and 3 while any new inlier appeared

Experiments with Outliers

"
$$^{\circ}$$
" outlier, "" occlusion, " $^{\circ}$ " $\lambda_p^i \leftarrow$ F, " $^{\circ}$ " $\lambda_p^i \leftarrow$ B

Cubes Corresp. / outl. det. Depth estimation	5 images [768×576] manual / 5 central image No. 1											
All / cont. / p. val. Mean error / outl. [p	tracks 26 / 10 / 9 oxl 0.22 / 6.93											
· · · · ·		26 pc	oints									
mages		• 0 • • 0 • • 0 0	• • • • • • • • • • • • • • • • • • • •	• • • •	• 0 • 0	• • •	• •	• • •	• • •	• • •	• •	•]
(]	• • • • •	• •	• 0	• •	o o	•	•		•			

Temple (Leuven)	5 images [867×591]					
Corresp. / outl. det.	Harris' operator / 2					
Depth estimation	sequence					
All / cont. / p. val.	tracks 284 / 20 / 6					
Mean error / outl. [p	xl] 0.27 / 3.64					

284 points

When Discontinuous Tracks Present

track = correspondence = column of R = projections of the pth world point into all images

registering subtracks & joining the overlapping ones

use disjoined subtracks in reconstruction separately

Conclusion

- A **new algorithm** for a general situation
 - **perspective** camera
 - occlusions
 - outliers
- Experiments
 - real scenes: applicable in wide base-line as well as on sequences

Initial Set of Inliers

Let μ denote the size of the minimal consistent set, $\mu>6.$

- 1. Choose randomly a triple of images so that there are at least μ common points in these images. Let $\mathbf{i} = \{i, j, k\}$ denote the index set of the chosen images. Let \mathbf{p} denote the index set of the points visible in images \mathbf{i} .
- 2. In images i, choose randomly 6 common points in a non-degenerate configuration and estimate \mathcal{T} and camera matrices P^i , $i \in i$. There will be one or three real solutions.
- 3. Finding the consistent set with \mathcal{T} .
 - (a) Estimate 3D points \mathbf{X}_p , $p \in \mathbf{p}$, using $P^{\mathbf{i}}$.
 - (b) Calculate the reprojection errors as

 $e_p = \max_{i \in \mathbf{i}} d(\mathbf{x}_p^i, \mathtt{P}^i \mathbf{X}_p)$

- (c) Compute the number of inliers consistent with $P^{i}(\mathcal{T})$ by the number of correspondences for which $e_{p} < t$.
- (d) If there are three real solutions for \mathcal{T} the number of inliers is computed for each solution, and the solution with most inliers retained.
- 4. Voting. If size of the consistent set is at least μ , then its image points except those used to estimate \mathcal{T} are (i) given a vote and (ii) used for updating the tracks.

Repeat steps 1-4 until image points are sufficiently sampled. Image points with high number of votes are tentative inliers, other points are tentative outliers.

Projective Depths in Two Views – Geometrical Explanation

 $\lambda \mathbf{x}_{\beta} = \tau \mathbf{e}_{\beta} + \lambda' \mathbf{x}_{\beta}' / \mathbf{e}_{\beta} \wedge$ $\lambda(\mathbf{e}_{\beta} \wedge \mathbf{x}_{\beta}) = \lambda'(\mathbf{e}_{\beta} \wedge \mathbf{x}_{\beta}')$ $\mathbf{e}_{\beta} \wedge \mathbf{x}_{\beta}' = [\mathbf{e}_{\beta}]_{\times} \mathbf{A}^{-1} \mathbf{x}_{\beta'}' = \alpha(\mathbf{F} \mathbf{x}_{\beta'}')$ $\lambda(\mathbf{e}_{\beta} \wedge \mathbf{x}_{\beta}) = \lambda' \alpha(\mathbf{F} \mathbf{x}_{\beta'}')$

)

•••••••••••••••••••••••••	••••••••	•••••••••••	•••••••••••••••••••••••••	••
•••••••••••••••••••••••••••••••••••••••	0 0 000	• 00 000000000 • ••• • ••••		• 00000 000
		0 0 • •••••••		00000 0
		0 • •••••••	• •• •••••••••••••••••••••••••••••••••	
	∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞)•• () ••• •••••••••••())) eeeeee eeeee ()	D
•••••••••••••••••••••••••••••••••••••••	0.0.0			
••••••••••••••••••••••••••••				• 000
• •••• ••••••••••••••••••••••••••••••••		O • ••••••••		•••••••••••••••••••••••••••••••••••••••
	00 000 •••• 0 00		•••••••••••••••••••••••••••••••••••••••	

and had the date

•	•	O	•	•	•	•	•	•	•	•	O	•	•		•	•	•		•	•	•	•	•	•
•	•	O	•	•	O	•	٠	O	O	•	0	•	•		•		•	0	•	•	•	•	•	٠
•	•	O		•	•	•	٠	•	•	O	0	O	•	0	•	•	•		•	•	•	•	•	٠
0	O		•		•	•	٠	•	•	•	0		•	0	•	•	•	0	•		•	•	•	
•	•	O	•	•	•	•	٠		•	•		•	•	0	•	•	O	0	•	•		•		

•••••••••••••••••••••••••••••••••••••••	,	•••••••••••••••••••••••••••••••••••••••			
······	,	•••••••••••••••••••••••••••••••••••••••	••••••	······	
000000	,	•••••••••••••••••••••••••••••••••••••••		······	······
····· • · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	⊙ •••••⊙••••		•	
• •• • • • • • • • • • • •	•••••••	<mark>⊘¤⊙</mark> ••⊙⊙••∞∞•••		••••	

