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Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz





Robust Rotation and Translation Estimation in Multiview Reconstruction

Daniel Martinec Tomáš Pajdla
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Abstract

It is known that the problem of multiview reconstruction
can be solved in two steps: first estimate camera rotations
and then translations using them. This paper presents new
robust techniques for both of these steps. (i) Given pair-
wise relative rotations, global camera rotations are esti-
mated linearly in least squares. (ii) Camera translations
are estimated using a standard technique based on Second
Order Cone Programming. Robustness is achieved by us-
ing only a subset of points according to a new criterion that
diminishes the risk of chosing a mismatch. It is shown that
only four points chosen in a special way are sufficient to
represent a pairwise reconstruction almost equally as all
points. This leads to a significant speedup. In image sets
with repetitive or similar structures, non-existent epipolar
geometries may be found. Due to them, some rotations and
consequently translations may be estimated incorrectly. It
is shown that iterative removal of pairwise reconstructions
with the largest residual and reregistration removes most
non-existent epipolar geometries. The performance of the
proposed method is demonstrated on difficult wide base-line
image sets.

1. Introduction
This paper1 makes a step towards automatic reconstruc-

tion procedure from a large number of images. This task
is difficult and has been extensively studied for the last two
decades [7]. In this paper, cameras are assumed to be cali-
brated [23]. In such a setup, pairwise Euclidean reconstruc-
tions can be estimated using RANSAC [18] up to similari-
ties. Given these, reconstruction of the whole scene can be
obtained by first registering all camera rotations and then

1This research was supported by The Czech Academy of Sciences un-
der project 1ET101210406, by the EU projects eTRIMS FP6-IST-027113
and DIRAC FP6-IST-027787, and by MSM6840770038 DMCM III. Jan
Čech from the Czech Technical University provided routines for dense
stereo [4]. Our bundle adjustment routine was based on publicly available
software [11].

Figure 1. A non-existent epipolar geometry (EG) raised by match-
ing similar structures on different buildings in the Zwinger scene.
The shown image pair 37-70 has 163 inliers which are 45% of all
tentative matches. It would be extremely difficult to find out that
this EG does not exist based on the two images only.

translations using them [26, 15]. Mismatches, i.e. wrong
point correspondences, cause several problems in such a
two-step reconstruction procedure:

1. A few mismatches which survived RANSAC cause no
difficulty in rotation registration as the relative rota-
tion is only slightly biased. On the other hand, a single
mismatch may cause a complete failure of translation
registration when minimizing the maximum reprojec-
tion error [10].

2. A non-existent two-view geometry may be found when
similar or repetative structures appear on different ob-
jects, see figures 1 and 9. According to our known-
ledge, no attempt has been done to handle the presence
of non-existent pairwise geometries in either rotation
or translation registration.

Previous Work

Enumeration of multiple view reconstruction methods
can be started with factorization methods. First Tomasi
& Kanade [25] used factorization on affine cameras. Ja-
cobs [9] improved handling occlusions. Extension for per-
spective cameras was given in [24]. Projective depths of
points, which correspond to the perspective effect, are itera-
tively improved in iterative factorization methods, e.g. [13].



Martinec & Pajdla [14] reformulated Jacob’s [9] approach
while enhancing numerical stability and applied it for rota-
tion registration using calibrated cameras [15]. Incremental
structure from motion can perform in real-time [2].

Recently, methods minimizing the L∞-norm appeared.
Kahl’s method [10] based on Second Order Cone Program-
ming (SOCP), which is a standard technique in convex op-
timization, estimates both camera translations and point po-
sitions given rotations while keeping all points in front of
cameras. In this paper, this problem is called translation
registration. The problem is quasiconvex and thus can be
solved via a series of SOCP problems using the bisection
method [10]. While [10] may fail due to a single mismatch,
method [20] is more robust as it relies on translation direc-
tions between camera pairs instead of on individual point
correspondences. However, method [20] would probably
fail when a non-existent epipolar geometry (EG) is included
in the data as the maximum angle between the estimated
translation vector and the desired one is minimized. The
translation vector of the non-existent EG cannot fit the re-
maining ones, thus the solution can be obtained with very
low precision. This problem cannot be solved by using the
uncertainty information [20]. Note that camera translation
in figure 1 is estimated with a low uncertainty due to a high
number of inliers even when the EG does not exist.

For a wide class of L∞ problems, Sim & Hartley [21]
proved that the set of measurements with the greatest resid-
ual must contain at least one outlier. Thus, one could keep
throwing out the measurements with the greatest residual.
However, it would be very time-consuming on large scenes
with hundreds of images and hundreds thousands of points.

This paper proposes (i) a new method for rotation reg-
istration. Two variants are presented: using quaternions
and using approximate rotations. The latter is simpler and
more stable than [15]. (ii) In each pairwise reconstruction,
a Gaussian is fitted in the rescaled image space and the
most likely mismatches are removed. (iii) Only four points
carefully chosen among the remaining points are used to
represent them almost equally as all points, thus bringing
large speedup and memory savings. (iv) It may happen that
the rotation or the translation registration reveals that some
EG does not exist. In case rotations were estimated using
that EG, they should be reestimated without it as such esti-
mate was biased. It is shown that iterative removal of EGs
with the largest residual leads to the removal of most non-
existent EGs even for the case of a combination of a least
squares and an L∞ problem.

2. Rotation Registration
It is supposed that pair-wise Euclidean reconstructions

given up to rotations, translations, and scales are provided.
A brief description of how they were obtained for the data

presented in this paper is given in section 6.
The pair-wise reconstruction between views i and j de-

scribes the relative rotation between the two cameras, Rij ,
Rij ∈ R3×3, Rij orthonormal. The problem of rotation reg-
istration can be formulated as a search for the registered
rotations Ri, Ri ∈ R3×3, Ri orthonormal, i = 1, . . . ,m,
such that relations among them are given by the relative ro-
tations:

Rj = RijRi for all ij (1)
Ri orthonormal for i = 1, . . . ,m (2)

When m − 1 relative rotations are known such that they
form a tree graph (with views as vertices connected by an
edge whenever the relative rotation between the views is
known), system of equations (1) is not overdetermined and
can be easily solved by fixing the first rotation and chaining
the remaining ones.

When at least m relative rotations are given, system (1)
becomes overdetermined and an exact solution may not ex-
ist due to noise in the data. Thus, we solve it in the least
squares while satisfying the orthonormality conditions (2).

A straightforward solution can be obtained using quater-
nions. Using them, system (1) becomes

ṙj = ṙij ṙi for all ij (3)

where ṙi and ṙj are the unknown quaternions of the ith and
jth camera rotation, respectively, and ṙij is the known rel-
ative rotation between cameras i and j. Each quaterion can
be thought of as a four-vector, similarly as complex num-
bers can be thought of as two-vectors. Using known manip-
ulations with quaternions [8], each equation in system (3)
can be rewritten as
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z with constraints (4) for each camera pair ij with
a known rotation. System of all ij-constraints (4) is sparse,
thus it can be solved using, e.g., MATLAB’s EIGS. The so-
lution is obtained as a unit vector. The quaternions, from
whose parameters the unit vector is composed, are not unit.
However, they can be easily made unit by dividing each by
its Euclidean length. This conversion is needed as only a
unit quaternion has a corresponding rotation. Then, the or-
thonormality conditions (2) are trivially satisfied.

Due to errors in relative rotations, the individual quater-
nions in the solution vector have different lengths. Because
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of this, each ij-constraint, i.e. the four equations (4) de-
manded by the ij-relative rotation, has a different influence
(weight), which is approximately proportional to the lengths
of the resulting i- and j-quaternions. The shorter are the two
four-vectors, the smaller attention has to be given to the four
equations. As a consequence, the difficult partial recon-
structions, i.e. those which significantly differ from the re-
maining ones, are given small attention. They get weighted
down to better fit the majority of constraints.

Remark. A solution would be to add the constraint on
unit lengths of all resulting quaternions:

(ri
0)

2 + (ri
x)2 + (ri

y)2 + (ri
z)

2 = 1 for all i (5)

Unfortunately, sofar no satisfactory way for solving a linear
system with quadratic equations like (5) is known.

2.1. Registration using Approximate Rotations

An alternative way is to solve system (1) without satis-
fying the orthonormality constraints (2). In fact, system (1)
consists of three smaller subsystems

rj
k − Rijri

k = 03×1 for all ij (6)

for k = 1, 2, 3, where ri
k are columns of Ri, Ri = [ri

1r
i
2r

i
3].

The solution for approximate rotations can be found as the
best three linearly independent least squares solutions to
system (6). System (6) is sparse and thus can be solved,
e.g., using MATLAB’s EIGS. See [14] for details on a solu-
tion to a similar system. The orthonormality constraints (2)
are enforced by projecting the approximate rotation to the
closest rotation in the Frobenius norm using SVD [15].

Compared to [15], no auxiliary variables rotating the
partial reconstructions to the global coordinate system are
needed. Thus, this solution is simpler and faster. We ob-
served that it is also more stable.

Results got improved when ij-equations (6) correspond-
ing to the ij-EG were reweighted by min(a, 400), where a
is the number of inliers in the ij-EG. Solution to (6) can be
found very efficiently. Rotation registration of 259 views
using 2049 relative rotations in the Tête scene (see figure 7)
using MATLAB’s EIGS took only 0.37 seconds.

Comparison with Quaternions

On the Head scene [15] (not shown here due to the lack
of space and its simplicity), the ratio between the maxi-
mum and minimum quaternion lengths from (4) was 5.04.
On the other hand, the norms of the 3 × 3 matrices found
by (6) were very close to each other (less than 1%). Norms
of individual 3-vectors were even closer (less than 0.1%).
The maximum Frobenius norm of the difference between
the relative rotation and the relative rotation after registra-
tion, ||Rij − RjRi>||, was 1.98 and 0.37 for quaternions and

approximate rotations, respectively. The fact that the first
number is very close to the maximum possible norm (which
is 2) shows that the method using quaternions in not usable
in practice. In the rest of the paper, only approximate rota-
tions are used.

The reason why the least squares solution is worse for
quaternions than for approximate rotations is perhaps the
following. When searching for the most suitable rotations,
it is easier to search in the space of approximate rotations
(all 3 × 3 matrices) than in the space of rotations (quater-
nions). The latter is a small manifold included in the first
space. In both cases, a solution that well satisfies all con-
straints on relative rotations is searched for.

The inconsistencies in constraints prove as (i) getting off
the manifold and (ii) changing lengths of vectors represent-
ing individual rotations. The approximate rotations “use”
both (i) and (ii) “effects” and thus are in higher accordance
with all constraints as they can be off the manifold. (It is not
far from the manifold, as will be shown on experiments.)
For quaternions, (i) is not possible. This thus causes a big-
ger pressure on (ii), i.e. deformation of quaternion lengths.
As a consequence, the constraints with very short quater-
nions are given a very low attention, which is the undesired
side effect. This effect happens with approximate rotations
as well but with a lower order differences, as shown above.

3. Data Compression and Clarification
We found out that it is possible to represent each par-

tial reconstruction using four points only while capturing
the overall geometry well. The idea comes from projec-
tive factorization using perspective cameras [24]. Projec-
tion matrices of a partial reconstruction, P, multiplied with
all points reconstructed in that partial reconstruction, X,
form so-called rescaled measurement matrix λx = PX,
where the measured image points x are rescaled by depths
λ element-wise, λi

px
i
p = PiXp [24]. Here we work with

projected points PX instead of the rescaled measured im-
age points λx. It is equivalent when there is no noise in the
data. Usage of the projected points has the advantage that
the rescaled measurement matrix is less affected by noise
when cameras are well estimated (which is often the case).

The desired four points are chosen so that the corre-
sponding four columns in PX represent the four dimen-
sional subspace spanned by all columns of PX. Thus, the
necessary condition is that the chosen four columns are lin-
early independent. There are many such quadruplets, there-
fore an additional criterion is needed. Before formulating
it, a criterion for identifying mismatches will be given.

3.1. Identifying Mismatches

True matches connect one or several surfaces visible in
an image pair. True matches connecting the same surface

3



u1σ1
u2σ2

[1, 2.5]

[−2, 1]

[−0.2,−0.1]

Figure 2. Each point represents a vector in a two-dimensional vec-
tor space (here plane). The ellipse characterizes the fitted Gaussian
to the centered data. The ellipse center is in [0, 0] and its half-axes
are u1σ1 and u2σ2 where [u1u2] diag(σ1, σ2)V

> is the ”econ-
omy size” SVD factorization of PX. It is drawn for the 2D case
instead of 6D. The ellipse shape characterizes the most of the data
mass. The ML mismatches are the most distant points from the el-
lipse center w.r.t. the coordinate system given by ellipse half-axes.
The coordinates are drawn at three points. These are also rows of
the V matrix. Although the leftmost point is the most distant from
[0, 0], the upmost point is a more likely mismatch as its distance is
larger in the ellipse coordinate system: ||[1, 2.5]|| > ||[−2, 1]||.

are (i) localized close to one another in the images and (ii)
have similar depths. As a result, true matches form clusters
in the rescaled image space while mismatches are far from
the remaining data due to incorrect depths. To ensure that
the clusters are formed, the images of the scene must con-
tain sufficiently large surfaces on which multiple matches
forming a cluster could be detected and matched. There are
scenes which do not satisfy this assumption like, e.g., many
tiny branches of a tree. However, such scenes would hardly
be matched by any algorithm, thus the assumption on scenes
containing sufficiently large surfaces is not so restrictive in
practice. Any clustering algorithm could be used to find
individual surfaces corresponding to the clusters. Matches
contained in no or small clusters could be thrown away as
most likely (ML) mismatches. Nevertheless, in this work
we did something much simpler.

In this paper, the main purpose was to reliably remove
all mismatches as the L∞-norm, i.e. the maximum repro-
jection error, is minimized in translation estimation [10],
which may be hundreds of pixels due to a single mismatch.
Thus, to get a reasonable estimate using [10], all (or at least
most) mismatches have to be removed. We observed on
the presented scenes that either an EG was non-existent or
its inliers were contaminated by a low amount (less than
ε = 25%) of mismatches.2 A Gaussian was fitted to the
data in the rescaled image space and a prescribed amount,
ε, of most distant points was thrown away as the ML mis-
matches, see figure 2. Localizing the largest cluster (or a set

2When more mismatches are present, such EG is likely to be detected
and removed after translation registration, see section 5.

for k = 4:-1:1
[U,s,v] = svd(R*R’,0); % svd of a long matrix
S = sqrt(diag(s(1:k,1:k))); % using svd of a short one
V = ((diag(1./S)*v(:,1:k)’)*R)’; % R = U*diag(S)*V’
len = V’.ˆ2; if k > 1,

len = sum(len); end % squared lengths of rows of V
best = find(len == max(len));
p(k) = best(1);
C = R(:,p(k)); % the chosen column
R = R - C*(pinv(C)*R); % subtract its span

end

Figure 3. Choosing the four most different points representing a
partial reconstruction. In MATLAB code, variable R contains the
rescaled measurement matrix, PX. Indices of the chosen four
points are stored in variable p.

Figure 4. Image pair 19-22 in the Raglan scene. Points satisfy-
ing EG of this image pair (top row). Non-mismatch candidates
identified before the multiview registration (bottom left). The four
points used for translation registration (bottom right).

of large clusters) by a single Gaussian is justifiable when
the inter-cluster distances are relatively small compared to
the distances to mismatches. This simple way worked well
on scenes presented in the paper and many others.

After estimating the data mean and subtracting it from
all vectors, the covariance matrix of the Gaussian is ob-
tained using SVD. The ML mismatch is the most distant
point in the coordinate system given by the Gaussian co-
variance matrix. Its corresponding row in matrix V ∈ Rn×4

has the largest norm, where PX = Udiag(σ1, ..., σ4)V> is
the ”economy size” SVD decomposition. It is illustrated on
figure 2, see the explanation there.

All ε ML mismatches can be either (i) removed at once
or (ii) one by one while refitting the Gaussian after each ML
mismatch removal from PX. The latter way was used in this
work as a higher stability can be expected. The SVD decom-
position can be carried out efficiently, see lines 2–4 of the
algorithm in figure 3. Note that the most time consuming
operation is SVD applied to a 6 × 6 matrix irrespective of

4



Figure 5. Four most different points chosen after the removal of
ε = 25% ML mismatches. Image pair 41-48 in the St. Martin ro-
tunda is shown. The points lie in different depths and thus capture
the 3D geometry of the image pair well.

the number of points.3 An example of identified ML mis-
matches at ε = 25% is shown in figure 4.

Normalization. As the procedure is done on the rescaled
measurement matrix, i.e. on rescaled image data, the im-
age coordinates should be normalized to be close to one [7]
and the resulting PX should be balanced by rescaling its
columns and row triplets, as described in [24].

ML mismatches are identified prior to rotation registra-
tion. Doing it aferwards based on the partial reconstruction
reestimated using the registered rotations might be incorrect
as the estimate of the registered rotations may be severely
corrupted due to non-existent EGs (see section 5).

As a side effect of the removal of all ε ML mismatches,
many true matches are removed as well. Nevertheless, it is
not a problem as the left data constrain the multiview recon-
struction sufficiently, as will be shown in section 4.

3.2. Reconstruction Represented by Four Points

After PX has been cleared of mismatches, the same
Gaussian fitting technique is used for choosing the four
points for representation of the partial reconstruction. If
the data contains a mismatch, the most different point is
the ML mismatch. However, after the data was cleared of
mismatches, the most different point is the best inlier for
representing the geometry. The four points are found in the
following way. After identifying the most different point,
the whole matrix is projected onto the span of the chosen
column and subsequently subtracted from PX. This is re-
peated four times. The procedure is summarized in figure 3.

The chosen points lie in different depths as well as the
ML mismatch does. However, here it is advantageous as
the different depths capture the 3D geometry of the two im-
ages well, as can be seen in figure 5. Note that if the data
contained any previously not removed mismatch, it would
very likely appear among the chosen four points.

3If needed, even a more efficient implementation is possible using in-
cremental SVD [3] instead of the standard SVD.

Figure 6. The Raglan scene: an overall view with a bridge on the
left.

Remark. The ML mismatch identification and the
choice of the four representative points work for projective
reconstruction as well since product PX depends on images
and not on the choice of a reference frame. The depths do
not have to be positive, nor the cameras calibrated. The
only thing that matters is how the columns corresponding
to points are situated in the subspace generated by normal-
ized columns of PX (cf. the note on normalization above).

4. Translation Registration
In [15], translations and points in each partial reconstruc-

tion were estimated using [10]. Then, all partial reconstruc-
tions were refined together using bundle adjustment (BA)
while keeping rotations registered. Unlike in [15], in this
work, no such intermediate BA is performed. The reason
is that the precision of the proposed rotation registration is
satisfactory when combined with the robust point sampling
explained above.

Method [10] is applied only once on the data from all
partial reconstructions. However, each partial reconstruc-
tion is represented by four points chosen as explained in
section 3.2 instead of almost all points. Thus, it is much
faster. After translation registration, BA on all data was
done and dense reconstructions were obtained using [6, 4].

The Raglan scene [19] was captured on 46 images, 238
EGs were found (see details in section 6). When [10] was
applied on all points in all partial reconstructions (186131
points in total), the maximum residual of 98.57 pixels was
obtained in 3 hours and 6 minutes. When using only the
four representative points, the maximum residual of 98.46
pixels was obtained in 4.68 seconds. This demonstrates that
the four points represent geometry of the individual recon-
structions well while achieving a huge speedup (of factor
2385 at this particular scene). When using quadruplets cho-
sen from the non-mismatch candidates at ε = 25%, the
obtained error decreased to 22.30 pixels. It was manually
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Figure 7. The Tête scene. The profile view - top of the mounain is on the left-hand side (left). View from the valley up (right).

Figure 8. The Tête scene. View from top into the left (left) and
right valley (right).

verified on several quadruplets with largest residuals [21]
that none of them included a mismatch, although there were
many in the data, see figure 4. When using the intermediate
BA with rotations kept registered (see the beginning of this
section) before applying [10] on all image pairs, the max-
imum error dropped to 12.09 pixels. The reconstruction is
shown in figure 6.

The Tête de Plate Longe (shortly Tête) scene (259 im-
ages, 2049 EGs) was reconstructed with the largest resid-
ual of 38 pixels in 74 seconds. Manual inspection verified
that no mismatch was present. We tried several strategies
for reweighting equations (6) based on residuals in individ-
ual partial reconstructions, however no general strategy was
found (the best trial dropped to 27). See figures 7 and 8.

5. Robust Rotation Estimation
It turned out that even if the found relative rotation is

close to the desired one in the Frobenius norm, i.e. ||Rij −
RjRi>|| is small, the partial reconstruction with rotation re-
placed by the found rotation (and with translations reesti-
mated [10]) may still produce large residua. This effect
could be reduced by using rotation uncertainties [20]. How-
ever, a more serious problem is when the rotation registra-
tion is contaminated by some non-existent EG. Fortunately,
it has been observed that the points from such an EG have

Figure 9. Iterative removal of EGs with the largest residual. One
of 13 non-existent EGs in the St. Martin rotunda: image pair 4-119
(top row). Decreasing of the maximum residual is shown for the
St. Martin (bottom left) and the Zwinger scene (bottom right).

large residua after the rotation and translation registration.
Thus, it is straightforward to remove such partial recon-
struction and reestimate rotations and translations.

As mentined in the introduction, it was proved [21] for
a wide class of L∞ problems that the set of measurements
with the greatest residual must contain at least one outlier.
However, it is not the case of the least squares rotation esti-
mate presented here. Nevertheless, it will be shown on two
scenes that this property holds in practice even for the L∞
problem [10] initiated by the least squares solution to (6).

Our least squares solution to (6) provides quite a good
estimate even when many relative rotations came from non-
existent EGs (in the Zwinger scene, more than 156 (8%)
EGs were non-existent). The reason why it works so well
is perhaps that the existent EGs support each other while
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Figure 10. The St. Martin rotunda. Front and back view of the dense reconstruction with some cameras shown as image planes. Note the
details as the tree and the footpath around the building. The clouds come from tiny branches.

the non-existent ones rather do not as they raised almost
randomly and independently. However, each non-existent
EG deteriorates the quality of the solution.

Unlike [21], we do not remove single points but whole
partial reconstructions, in which some of the four points
reached the maximum residual. This brings an additional
speedup besides the compression to four points.

The St. Martin rotunda (124 images, 1670 EGs) was re-
constructed with the mean/maximum residual of 1.5/7.66
pixels after 11 iterations of removing EGs with the largest
residual and rotation and translation reestimation, see fig-
ure 9. There were 13 non-existent EGs detected (manually
checked), one of which is shown in figure 9. In some it-
erations, more EGs with the same maximum residual (at
some of the four points) were removed. The dense recon-
struction using [6, 4] in figure 10 demonstrates that the pro-
posed method reaches a high precision. The surface parts
from different views shown in different colors due to vary-
ing lightning conditions fluently connect to each other.

On the Zwinger scene (199 images, 1954 EGs),
method [10] produced error of 229 pixels in 51 seconds.
There were many non-existent EGs, see figure 9. It seems
that after the maximum residual dropped below 35 pixels (at
iteration 51, 123 EGs removed), it was hard to improve the
precision more. The reconstruction shown in figure 11 was
done using the result of iteration 100 (156 EGs removed,
error 31 pixels). It turned out after manual inspection that
still some non-existent EGs remained in the data.

6. Experiments
In experiments reported here, pairwise image match-

ing was done with Local Affine Frames [16] constructed
on intensity and saturation MSER regions, LaplaceAffine
and HessianAffine [17] interest points. Additional matches

Figure 11. The Zwinger scene. Only quadruplets of points repre-
senting EGs are shown. Non-existent EGs with many mismatches
between repetitive structures on building fasades are still present.

were found using SIFT features [12]. Only some image
pairs were matched on the large Tête and Zwinger scenes.
Details on the used heuristic will be published elsewhere.

The six-point RANSAC [23] with plane detection [5] was
run on the matched pairs and the focal length was calibrated
as the mean of all estimates. Then, BA on all pairs with fo-
cal lengths kept equal (but varying) was run, followed by
the five-point RANSAC [18] and track merging. Radial dis-
tortion was not removed from the images.

Due to a few repetitive structures in the Raglan scene and
a huge amount of them in the Zwinger scene, RANSAC on
many-to-many correspondences had to be used, details will
be reported in another publication.

It was desired to forbid all pairs not suitable for dense
stereo. These are especially pairs with (nearly) coinciding
camera centers forming a panorama. If some pair should
fit a panorama model, it must fit a weaker homography
model at least so well. Thus, only pairs with 90% inliers
lying on a (dominant) plane need to be checked for being a
panorama, the remaining ones cannot be a panorama. Fit-
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ting the panorama model was started by making the two
camera centers coincident by setting them to their mean.
Then BA constrained to keep the camera centers equal was
run. Many panoramas were successfully detected but some
not, which can be seen on the Tête scene in figure 7right.

7. Summary and Conclusions
A practical method for automatic reconstruction was pre-

sented. It was shown to work on hundreds of images.
99.68% of the measurement matrix of the Tête scene were
missing due to occlusions. There is no chance for any fac-
torization method to deal with such a large amount of miss-
ing data. The whole algorithm uses only two-view corre-
spondences except for the final BA, which starts with low
errors (from 7 to 30 pixels) and thus can change the overall
geometry only slightly. This means that the overall geome-
try is mostly determined by the rotation and translation reg-
istration. The rotation registration takes a fraction of a sec-
ond on hundreds of images and the translation registration
takes around a minute. Both should be repeated when the
data is contaminated by non-existent EGs. Even in this case,
the total running time is in the order of minutes, which is a
fraction of the time spent by BA in the incremental structure
from motion (SfM) [22]. Note that images of the presented
scenes are very sparsely captured compared to [22].

Closed image sequence is a problem for any incremental
SfM as the first and the last camera positions get misaligned.
In our approach, using all EGs at once has the advantage
that many closed loops among images can be handled.

It has been shown that the presented method is robust
to some contamination by non-existent EGs. The contam-
ination in the Zwinger scene is an extreme one: hundreds
of non-existent EGs, most of the existent EGs have mis-
matches on repetitive structures. To reconstruct this scene
better, detecting non-existent EGs prior to rotation registra-
tion seems to be needed.

More reconstructed scenes can be seen at [1].
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