Robust Rotation and Translation Estimation in Multiview Reconstruction

3D reconstruction from a difficult image se
ide \& narrow base-line, panoramas
repetitive structures, similar objects
\longrightarrow mismatches satisfying epipolar geometries (EGs)

non-existent EG removal

Problem formulation
Perspective camera projection: $\quad \lambda_{p}^{i} \underbrace{x_{p}^{i}}_{p}=\underbrace{P^{i}} \underbrace{X_{p}}_{4 \times 1}$

- 99.9% occlusions \Longrightarrow imputation, damped Newton [1] with random initialization impossible

Solution: rotation and translation registration $\underbrace{\mathrm{P}^{i}}_{3 \times 4}=\underbrace{\mathrm{K}^{i}}_{3 \times 3} \underbrace{\mathrm{R}^{i}}_{3 \times 3}[\underbrace{\mathrm{I}}_{3 \times 3} \mid-\underbrace{\mathrm{t}^{i}}_{3 \times 1}]$

Daniel Martinec
Tomáš Pajdla
Center for Machine Perception, Czech Technical University in Prague http://cmp.felk.cvut.cz

- global optimum, global error propagation
- more stable, faster and simpler than [4]

259 views using 2049 relative rotations in 0.37 sec

References
A. M. Budaman. Damped nextoon algerithes so mentin

\qquad points as the most likely mismatches
A 2D illustration: $\quad{ }_{[1,2.5)}$
 3. Repeat four times.
depths and thus capture the 3D
geometry of the image pair well

Contribution 2

Identifying mismatches satisfying an EG

- translations are registered by minimizing the L_{∞}-norm (maximum) the reprojection error $[3] \Longrightarrow$ all mismatches should be removed span rescaled image space (4D).

Observation True matches between the same surface are (i) local ized close to one another in the images and (iii) have similar depth. matches are far from the remaining data due to incorrect depths

- any clustering algorithm could be used but the following works:
- fit a Gaussian to the data in PX and remove 25% of most outlying
$\left\langle\mathbf{u}_{1} \mathbf{u}_{2}\right] \operatorname{diag}\left(\sigma_{1}, \sigma_{2}\right) \mathbf{v}^{\top}$ is e "economy size" SVD

Reconstruction represented by four points

- after removing mismatches, choose four most different points:

1. Identify the most different column in PX by fitting the Gaussian. 2. Project PX onto the span of the column and subtract from PX
\rangle

\longrightarrow maximum error $98 \longrightarrow 22 \mathrm{pxl}$
speedup of factor 2000
the chosen points lie in different
depths and thus capture the 3 D
Contribution 3:
Identifying non-existent EG

- non-existent EGs deteriorate the quality of rotation registration (3) \Longrightarrow non-existent EGs should be removed
Proposition [6] For a wide class of L_{0} problems, measurements with the greatest residual must contain at least one outlier.

$$
\text { - here: least squares rotation estimate }+L_{\infty} \text { translation estimate }
$$

in practice, points from non-existent EGs have large residua
\Longrightarrow remove such EGs

1. Register rotations (3) and translations [3].

2. If all residua are small, break.
3. Remove EGs in which some of the four points reached the maximum residual and go to 1 .

156 EGs removed, some remain

