

3D reconstruction from a difficult image set

• many images

wide & narrow base-line, panoramas

• repetitive structures, similar objects

 \longrightarrow mismatches satisfying epipolar geometries (EGs)

• 99.9% occlusions \implies imputation, damped Newton [1] with random initialization impossible

Solution: rotation and translation registration

\mathbf{P}^i =		_		$ -t^i $
3×4	3×3	3×3	3×3	3×1

124 images (24 shown)

dense reconstruction by Cornelius et al. [2]

Robust Rotation and Translation Estimation in Multiview Reconstruction

Daniel Martinec

Center for Machine Perception, Czech Technical University in Prague http://cmp.felk.cvut.cz

Contribution 1: Rotation registration

Task Given relative rotations [5], \mathbb{R}^{ij} , estimate registered rotations, \mathbb{R}^{i} , s.t. the relations among them are given by \mathbf{R}^{ij} :

 $\mathbf{R}^{j} = \mathbf{R}^{ij}\mathbf{R}^{i}$ for all ij

 \mathbf{R}^i orthonormal for $i = 1, \ldots, m$

Solution without satisfying the orthonormality constraints (2)

1. System (1) consists of three smaller subsystems

 $\mathbf{r}_{k}^{j} - \mathbf{R}^{ij}\mathbf{r}_{k}^{i} = 0_{3 \times 1}$ for all ij(3)

for k = 1, 2, 3, where \mathbf{r}_{k}^{i} are columns of \mathbf{R}^{i} , $\mathbf{R}^{i} = [\mathbf{r}_{1}^{i}\mathbf{r}_{2}^{i}\mathbf{r}_{3}^{i}]$.

- 2. Get the best three linearly independent least square solutions to (3). - Matlab's eigs
- 3. Find the closest rotation to \mathbb{R}^i in the Frobenius norm using SVD.
- global optimum, global error propagation
- \bullet more stable, faster and simpler than [4] 259 views using 2049 relative rotations in 0.37 sec

References

- [1] A. M. Buchanan. Damped newton algorithms for matrix factorization with missing data. In CVPR05, vol. 2, pp. 316-322.2005.
- [2] H. Cornelius, R. Šára, D. Martinec, T. Pajdla, O. Chum, and J. Matas. Towards complete free-form reconstruction of complex 3D scenes from an unordered set of uncalibrated images. In SMVP/ECCV, vol. LNCS 3247, pp. 1–12, Prague, Czech Republic, May 2004.
- [3] F. Kahl. Multiple view geometry and the L_{∞} -norm. In *ICCV05*, pp. II: 1002–1009, 2005.
- D. Martinec and T. Pajdla. 3D reconstruction by gluing pair-wise Euclidean reconstructions, or "how to achieve a good reconstruction from bad images". In 3DPVT, University of North Carolina, Chapel Hill, USA, June 2006. CD-ROM. [5] D. Nistér. An efficient solution to the five-point relative pose. PAMI, 26(6):756–770, June 2004.
- [6] K. Sim and R. Hartley. Removing outliers using the L_{∞} norm. In *CVPR*, vol. 1, pp. 485–494, New York, USA, June

This research was supported by The Czech Academy of Sciences under project 1ET101210406, by the EU projects eTRIMS FP6-IST-027113 and DIRAC FP6-IST-027787, and by MSM6840770038 DMCM III.

Tomáš Pajdla

Contribution 2: Identifying mismatches satisfying an EG

- translations are registered by minimizing the L_{∞} -norm (maximum) of the reprojection error $[3] \implies$ all mismatches should be removed
- (1)(2)

span rescaled image space (4D).

Observation True matches between the same surface are (i) localized close to one another in the images and (ii) have similar depths. \implies true matches form clusters in the rescaled image space while mismatches are far from the remaining data due to incorrect depths

- any clustering algorithm could be used but the following works:
- fit a Gaussian to the data in **PX** and remove 25% of most outlying points as the most likely mismatches
- A 2D illustration:

 $[\mathbf{u}_1\mathbf{u}_2]\operatorname{diag}(\sigma_1,\sigma_2)\mathbf{V}^ op$ is the "economy size" SVD factorization of **PX**

true matches

four most different points

Reconstruction represented by four points

- after removing mismatches, choose four most different points:
- 1. Identify the most different column in **PX** by fitting the Gaussian.
- 2. Project **PX** onto the span of the column and subtract from **PX**.
- 3. Repeat four times.

Contribution 3: Identifying non-existent EGs

• non-existent EGs deteriorate the quality of rotation registration (3) \implies non-existent EGs should be removed

Proposition [6] For a wide class of L_{∞} problems, measurements with the greatest residual must contain at least one outlier.

- here: least squares rotation estimate + L_{∞} translation estimate
- in practice, points from non-existent EGs have large residua \implies remove such EGs
- 1. Register rotations (3) and translations [3].
- 2. If all residua are small, break.
- 3. Remove EGs in which some of the four points reached the maximum residual and go to 1.

