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{martid1, pajdla}@cmp.felk.cvut.cz

D. Martinec and T. Pajdla. 3D reconstruction by fitting low-rank matrices
with missing data. In Proceedings of the Computer Vision and Pattern
Recognition conference 2005, San Diego, CA, USA, June 2005.

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/martinec/Martinec-CVPR2005.pdf

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University
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Abstract

A technique for building consistent 3D reconstructions
from many views based on fitting a low rank matrix to a ma-
trix with missing data is presented. Rank-four submatrices
of minimal, or slightly larger, size are sampled and spans
of their columns are combined to constrain a basis of the
fitted matrix. The error minimized is expressed in terms of
the original subspaces which leads to a better resistance to
noise compared to previous methods. More than 90% of the
missing data can be handled while finding an acceptable
solution efficiently. Applications to 3D reconstruction us-
ing both affine and perspective camera models are shown.
For the perspective model, a new linear method based on
logarithms of positive depths from cheirality is introduced
to make the depths consistent with an overdetermined set of
epipolar geometries. Results are shown for scenes and se-
quences of various types. Many images in open and closed
sequences in narrow and wide base-line setups are recon-
structed with reprojection errors around one pixel. It is
shown that reconstructed cameras can be used to obtain
dense reconstructions from epipolarly aligned images.

1. Introduction

Problem of fitting a low-rank matrix to a matrix with
missing data appears in 3D reconstruction of rigid [14, 7,
9, 4] and non-rigid scenes [2]. Several attempts to pro-
vide reconstruction from many images in a one-step algo-
rithm have been made. However, none of these methods
succeeded to process more than a few tens of images when
the amount of missing elements reaches 90% of the mea-
surement matrix and cameras have large field of view or are
in a wide base-line setup. In this paper we present a tech-
nique that builds a consistent reconstruction (1) for scenes
∗This research was supported by the The Czech Academy of Sciences

under project 1ET101210406 and by the EU project IST-2001-39184. An-
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Figure 1. Reconstruction from a wide base-line scenario after Eu-
clidean BA: the St. Martin rotunda on 24 images, 89% data miss-
ing, top view. Some cameras are positioned very close to each
other while some are distant making the SFM problem difficult

of various types: open and closed sequences in both nar-
row and wide base-line setups, and (2) for various camera
models: affine and perspective, which can model also omni-
directional cameras.

Our algorithm has the following advantages: (i) it pro-
vides an overall scene structure and motion in a single step
without requirements such as linear ordering of images in a
sequence (ii) the solution is obtained as a global optimum
of a reasonable cost function defined on an approximation
to the original SFM (structure-from-motion) problem. The
obtained projective reconstruction can be easily upgraded
to the metric one, see figure 1. The result can be used for
dense reconstruction, see figure 6.

Relevant methods can be divided into two groups. (i) So
called factorization methods, e.g. [14, 13, 7, 9], try to fill the
unknown elements of the matrix of all measurements. (ii) In
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Guilbert’s method [4], affine fundamental matrices are es-
timated from the image measurements, and affine camera
matrices are estimated from the fundamental matrices. Our
new method cannot be classified as a factorization method,
although factorization on small complete matrices appears
inside. Similarly to [4], it produces a direct solution on cam-
era matrices. In contrast to [4], the minimized error is ex-
pressed in terms of image data and not elements of funda-
mental matrices as in [4].

Our method does not try to fill any elements and even
does not hallucinate them as, e.g., in [2]1. The missing data
are not modelled in the algorithm at all. Only known data
are exploited while minimizing their distance to the fitted
matrix. The method bootstraps from rank-four submatrices
of minimal or slightly larger size. Linear spaces generated
by their rows or columns are combined to constrain basis
of the whole measurement matrix. This idea has already
appeared in [7]. However, the way it is realized in this paper
is novel.

The most crucial difference from [7] is that the solved
problem is formulated in terms of the original subspaces,
and not the complementary ones as in [7]. Therefore, er-
ror due to noise is corrected where it was physically caused,
i.e. in the spaces generated by image measurements and not
in their complements. Our formulation is equivalent to [7]
in case there is no noise in the data. However, as a rea-
sonable error is minimized, it has much better behaviour
when noise is present which enables handling lots of miss-
ing data. Moreover, it leads to precise and fast algorithms as
only a small system of equations with a sparse design ma-
trix has to be solved. In application to 3D reconstruction,
large data compression is reached by taking only the four
singular vectors best explaining the submatrix of (possibly)
large amount of points seen in an image pair or triple.

This paper brings the following contributions: (i) a new
technique for fitting a low-rank matrix to a matrix with
missing data is introduced (section 2). (ii) Two ways of its
application to the structure-from-motion problem are given
for both affine and perspective camera models (sections 3
and 4), (iii) a new method for estimating projective depths
consistent with an overdetermined system of epipolar ge-
ometries is introduced (section 4.1).

Basic Concepts

Consider a set of n 3D points, some of which are visible
in some of m images. There may be mismatches in image
measurements. The goal is to reject mismatches and to re-
cover the 3D structure (point locations) and motion (camera
locations) from the remaining image measurements.

Let Xp be the unknown homogeneous coordinate vectors
of the 3D points, Pi the unknown 3× 4 projection matrices,

1Method [2] was not usable on the data presented in this paper at all

and xip the measured homogeneous coordinate vectors of
the image points, where i = 1, . . . ,m labels images and
p = 1, . . . , n labels points. Due to occlusions and misde-
tections, xip are unknown for some i and p.

The basic image projection equation says that xip are the
projections of Xp up to unknown scale factors λip called
(projective) depths:

λipx
i
p = PiXp (1)

The complete set of image projections can be gathered into
a matrix equation. The 3m × n matrix [xip]

i=1...m
p=1...n will be

called the measurement matrix (MM).

2. Fitting Matrices with Missing Data

Let y ∈ R3m×n be some matrix with missing elements.
The method will be explained on rank-four matrices, but it
can be used for any rank. Matrix y can represent, e.g., the
MM rescaled by the projective depths, [λipx

i
p]
i=1...m
p=1...n . The

task is to find the best rank-four fit PX to known elements
of y in the least squares where P ∈ R3m×4, X ∈ R4×n. A
description of a good suboptimal solution follows.

Rank-four submatrices of y will be used to constrain the
column basis P of y. Let their number be denoted by T .
Let it and pt denote sets of row and column indices of the
tth submatrix within y, respectively, 3|it| ≥ 4, |pt| = 4.
Notation Ai

p will denote the submatrix of A composed of
elements in rows i and columns p. Omitting superscript or
subscript means taking all rows or columns, respectively.
Let only submatrices with (i) all its elements known and
(ii) linearly independent columns be chosen. Let the tth

submatrix be denoted by P̃t, P̃t = yit
pt .

2 Then,

P̃1 = Pi1Xp1

...
P̃T = PiT XpT .

(2)

From linear independency of columns of P̃t and (2),

rank P̃t = rankPit = rankXpt = 4. (3)

Jacobs [7] used the fact that span P̃t = spanPit to con-
strain P by spanP ⊆ span ypt where span ypt can be in-
terpreted as the linear hull of all possible fillings of ypt (see
the interpretation in [9, fig. 1]). He formulated the con-
straint using complementary subspaces Nt = (span ypt)

⊥

as P ⊆ N⊥ where N is the union of the complementary sub-
spaces, N =

⋃
t=1,...,T Nt.

However, this formulation does not treat noise well.
Small changes in Nt (caused by noise in ypt ) are accumu-
lated in their union N and may result into a large change

2 P̃t can be viewed as cameras in a projective reconstruction of yit
pt

with points I4×4, yit
pt = P̃tI4×4 , where I denotes the identity matrix.



in N⊥. The reason is that the noise is physically caused in
the original subspaces (on image data) where it should also
be corrected, as our method does, which will be shown be-
low. In fact, [7] corrects the error in the complementary
subspaces (Nt, N) which have an unclear connection to the
original noise.3 We observed that [7] breaks down when
noise is present and the number of images, over which the
partial reconstructions are glued, reaches some limit. E.g.,
[7] could reconstruct only a subsequence of at most 22 im-
ages of the Dinosaur sequence shown in figure 2. We have
not observed any such limit at our method even when hun-
dreds of images were used.

Our new approach exploits the fact that rankXpt = 4
thanks to which the inverse to Xpt exists, Ht = X−1

pt . The tth

equation in (2) can be now multiplied by Ht from the right:

P̃1H1 = Pi1

...
P̃THT = PiT .

(4)

Although equations 2 are bilinear in unknowns P and X,
equations 4 are linear in all unknowns, P and Ht, and thus,
given sufficiently many equations, solvable uniquely up to
an overall projective transformation. Due to the bilinearity
of the original problem (2), only its approximation is found
by solving the transformed problem (4). However, it is a
good approximation, as will be demonstrated.

2.1. Solving System 4

Denoting Pit = [qit
1 qit

2 qit
3 qit

4 ] and Ht =
[ht,1ht,2ht,3ht,4], the tth equation in (4) can be rewritten
as

P̃tht,1 − qit
1 = 0

P̃tht,2 − qit
2 = 0

P̃tht,3 − qit
3 = 0

P̃tht,4 − qit
4 = 0.

(5)

Denoting zc = (h1,c, . . . ,hT,c,q
i1
c , . . . ,q

iT
c )>, the whole

system 4 can be rewritten as



A 0 0 0

0 A 0 0

0 0 A 0

0 0 0 A




︸ ︷︷ ︸
B4f×4g




z1

z2

z3

z4


 = 04f×1 (6)

where A and all 0matrices are of size f×g, f =
∑T

t=1 3|it|,
g = 4|T |+ f . Matrix A is composed of T sub-blocks in the

3Subspace Nt is represented in [7] using an orthonormal basis of the
complementary subspace to span ypt .

form A
I(it)
[4t−3:4t,4|T |+I(it)]

= Ct = [P̃t | − I3|it|×3|it|] corre-
sponding to one equation in (5) where I(i) returns indices
of rows in the MM corresponding to images i. Matrix Ct is
of size 3|it|×(4+3|it|), rankCt = 3|it|, dim null Ct = 4. If
the partial reconstructions have sufficient overlaps in cam-
eras for ensuring that all cameras Pi have consistent pro-
jective frames4, dim null A = 4 in case there is no noise
in the data. Consequently, dim null B = 16, see (6). The
number sixteen corresponds to the freedom for the sixteen
parameters of the overall projective transformation. How-
ever, not all solutions from this sixteen-dimensional space
are acceptable. It is required that the solution satisfies
rankHt = rankPit = 4, see (3), which is equivalent a con-
junction:

ht,a and ht,b are linearly independent
qit
a and qit

b are linearly independent

}
for a 6= b. (7)

It might be possible to solve the large system 6, e.g., by
Matlab’s EIGS on B>B, and to choose (we do not know how)
some appropriate vector from its sixteen-dimensional solu-
tion space. Nevertheless, a more simple and efficient way is
to find the best four linearly independent solutions to system

Az = 0f×1 (8)

in the least squares. These solutions satisfy properties (7):

Proposition 1 Let z1, z2, z3, z4 be four linearly indepen-
dent solutions to system 8. Then, (7) holds.

Proof. Due to the limited space, only the idea of the proof
for T = 1 is shown. Let the assumption hold. For con-
tradiction, let, e.g., ht,2 = αht,1 for some α ∈ R. Then,
using (5), columns of
[

ht,1 ht,2
qit

1 qit
2

]
=

[
ht,1 ht,2
P̃tht,1 P̃tht,2

]
=

[
ht,1 αht,1
P̃tht,1 αP̃tht,1

]

are linearly dependent. Contradiction.
In case of noisy data, P̃t in the eq. above can be replaced

by another rank-four matrix, Ṗt, close to P̃t such that equa-
tions 5 hold for Ṗt exactly. 2

It turned out in our experiments that transforming P̃t into
an orthonormal basis by P̃t 7→ P̃tGt is a good choice, as
in [7]. Note that Gt is absorbed by the estimated Ht matrix
achieving well conditioning of the system.

2.2. What Is Being Minimized in System 4

The best approximate solution to the original prob-
lem (2) in the least square sense minimizes the error

eorig = min
rank Pit=rank Xpt=4

∑

t

∥∥P̃t − PitXpt

∥∥2

4Let the projective frame of cameras it be chosen as a reference frame
for some t. Camera a has a consistent frame if there is (i) one image triple
it = {a, b, c} or (ii) two image pairs it = {a, b} and it′ = {a, c} such
that b and c have a consistent frame.



where ‖ · ‖ denotes the Frobenius norm. In (4), error

emin = min
rank Pit=rank Ht=4

∑

t

∥∥P̃tHt − Pit
∥∥2

(9)

is minimized. Remember that t goes over all sampled rank-
four submatrices thus in a typical situation the same el-
ements of P appear many times in the previous formula.
Therefore, in presence of noise it is impossible to reach zero
value for emin. Although emin differs from eorig, it is still
reasonable to minimize such error, as will be shown in ex-
periments.

Remind that factorization minimizes exactly the repro-
jection error when the affine camera model is used. Using
the perspective camera model, if all the depths are close to
equal, then it minimizes a good approximation to the repro-
jection error [5, p. 446]. Factorization searches for such a
four-dimensional subspace that best approximates each data
column. In our framework, an extensive sampling of matri-
ces yit

pt would be necessary for reaching a similar effect at
least for that all the data is used.

Such sampling would be computationally expensive and
it is not clear to us how successful could be such an attempt
in, e.g., equiponderant exploitation of all the data. Never-
theless, there is a way of simplifying the sampling. Its idea
comes out from that whatever data are contained in matri-
ces P̃t, their columns are always transformed (close) to Pit ,
see (4). So if two matrices P̃t and P̃s, t 6= s, share the
same row (or column) indices, it = is, it makes sense to
use the least squares approximation to the two subspaces
instead. The effect is not only reduction of the number of
unknowns Ht but foremost suppression of noise. The least
squares approximation can be obtained by factorization us-
ing SVD. By this, the powerful feature of factorization of
the optimal propagation of error is adopted. It is good to
use factorization globally. In our framework, factorization
is used only locally due to the missing data but it does not
matter much because a global propagation of error is done
in (4). This propagation is done very finely as the solution
is searched for in a high dimensional space thanks to many
auxiliary variables Ht, see (9). Thus, our model is very rich
compared to [7] but it does not overfit. Consistent cameras
P and homographies Ht are searched for so that projections
of the four points I4×4 best fit all partial reconstructions,
P̃tHt = PitI4×4.

2.3. Aligning Partial Reconstructions

It would be best to estimate the subspaces from as large
submatrices as possible. However, finding the largest com-
plete submatrix in a matrix with missing elements is known
to be NP-hard [7]. Moreover, in vision applications, image
measurements often originate from image pairs or image
triples. Therefore, we use all known measurements in an

image pair or triple, similarly to [7]. Thus, for given image
indices i, submatrices yi

p are as wide as possible.
Outlier rejection from such matrices can be easily done

using, e.g., RANSAC or iterative factorization with rejecting
points with reprojection errors above some threshold after
each iteration (both ways lead to similar results in our exper-
iments with 1 pxl threshold). The column basis of span yit

pt ,
denote it by P̂t, is estimated as P̂t = U1,2,3,4 where yit

pt =

U diag(σ1, . . . , σz)V
> is the SVD factorization. The row ba-

sis of span yit
pt , X̂t, is estimated as X̂t = V1,2,3,4

>.
Partial reconstructions are aligned via cameras using:

ω1P̂1H1 = ω1P
i1

...
ωT P̂THT = ωTP

iT .

(10)

Here, ωt denotes the weight of the tth partial reconstruc-
tion taking into consideration belief of the estimate of the
reconstruction expressed in terms of the number of corre-
spondences consistent with it:

ωt =

√
nt
n̄

where nt = |pt| and n̄ is the average number of correspon-
dences. Normalization by n̄ gets all weights close to one
and is done due to conditioning. System 10 is solved in the
least squares, thus the square root from ωt disappears in the
minimized error, see (9), which thanks to this well approxi-
mates the reprojection error measured on the whole MM.

Aligning reconstructions via points, the transposed prob-
lem, is solved similarly using the row bases:

ω1X̂
>
1 H̃1 = ω1X

>
p1

...
ωT X̂

>
T H̃T = ωTX

>
pT .

(11)

Here, nt used to compute ωt denotes the number of cam-
eras, nt = |it|.

Indeed, system 10 can be interpreted as aligning or glu-
ing partial reconstructions, each represented in a different
projective coordinate frame by at least two cameras P̂t,
|it| ≥ 2. Homography Ht maps the coordinate system of the
tth partial reconstruction to the global coordinate system of
the reconstruction of all data. Similarly, in system 11 each
partial reconstruction is represented by at least four points
X̂t, |pt| ≥ 4. Systems 10 and 11 are special cases of (4).

To demonstrate the quality of approximation to (2)
by (10), comparison with factorization by SVD on a com-
plete MM was done. Our method gave only 0.7% worse
mean reprojection error than SVD of the complete MM ob-
tained by multiplying cameras P and points X from the re-
construction of the Dinosaur sequence with added 1 pxl



Figure 2. Initial reconstruction of the Dinosaur sequence of 35 im-
ages using affine camera model and gluing via points: (left) Open
sequence with mean reprojection error 2.57 pxl. 72 image triple
constraints were used. (right) Closed sequence with mean repro-
jection error 2.65 pxl. 74 image triple constraints were used

noise.5 Note that in contrast to factorization our approach
can handle the missing data.

It turned out in our experiments that adding also con-
straints from image four, five, . . . -tuples did not improve
results much. The reasons are the following: (i) the less
images, the more matches are in them and thus the better
estimation of P̂t and X̂t and (ii) the more images, the more
it is likely that an outlier appears in a track (column of yi

p)
regardless of the type of the used outlier rejection scheme.

3. Affine Camera Model

In the affine model, camera centers are considered to
be infinitely distant from the scene structure, hence (i) all
depths are equal and can be set to one and (ii) the last row
of all camera matrices is [ 0 0 0 1 ]. Therefore, image pro-
jection equation 1 can be rewritten as

1

(
x̄ip
1

)
=

[
P̄i ti

0 0 0 1

](
X̄p

1

)

and simplified to

x̄ip =
[
P̄i ti

]( X̄p

1

)
. (12)

Let x̄it
pt = U diag(σ1, . . . , σz)V

> be the SVD factorization.
(i) Gluing via cameras. Equations 10 are of the follow-

ing form due to the special structure of affine homographies
Ht:

[ˆ̄Ptt̂t]

[
At bt

01×3 1

]
= [P̄ittit ] t = 1,. . . ,T.

5The perspective camera model was used. It was used in this paper with
Hartley’s normalization of the image measurements. Here, the projective
depths were obtained from the reconstruction. Partial reconstructions from
image triplets 1-2-3, 2-3-4, . . . , (m− 2)− (m− 1)−m were used.

From this, ˆ̄PtAt = P̄it , which allows to estimate P̄ up to
translations as a rank-three fit similarly to (10), provided ˆ̄Pt
have been estimated as ˆ̄Pt = U1,2,3. Then, translations of
all cameras ti and all points X̄p can be estimated from the
non-homogenous system 12 written for all projections.

(ii) Gluing via points. X̂t is estimated as X̂t = V1,2,3,4
>.

The fourth coordinates of points X estimated using (11)
are not exactly one. Therefore, the closest vector from
spanX> to vector [1 1 . . .1]> is found in the least squares
as v = X>(X>)+[1 1 . . . 1]> where + stands for pseudoin-
verse. Then, v is replaced in spanX> by [1 1 . . . 1]> as
X := [U(:, 1 : 3), [1 1 . . .1]>]> where X> − vv+X> =
U diag(σ1, . . . , σz)V

> is the SVD factorization. Cameras are
estimated as

[
P̄i ti

]
= (X>pi)

+x̄ipi where pi denotes points
observed by the ith camera. Finally, points are estimated as
X̄p = P̄i

+
(x̄

ip
p − ti) where ip denotes cameras observing

the pth point.
Results of gluing via cameras on open and closed Di-

nosaur sequence were 3.85 and 3.68 pxl, respectively. Re-
sults of gluing via points were better, see figure 2 and
its caption. Euclidean update was done using Guilbert’s
method [4] and his code downloadable from his web-page
(see [4]). Focal length was set to 2000 as in Guilbert’s
code. Reprojection errors of the initial reconstruction on
both open and closed sequences are below 2.7 pxl, which is
twice lower than 5.4 pxl of the state-of-the art technique [4].

Our technique using the affine model on a wider field of
view resulted into mean reprojection errors of hundreds of
pixels. In the St. George rotunda, a significant perspective
effects are present as, for instance, cameras 22 and 65 are
very close to the object, see figure 4 right. Our conclusion
is that this method can be used with the affine model for
a narrow field of view only. It will be shown in the next
section that the perspective model can be successfully used
to model a wide field of view in this method.

4. Perspective Camera Model

In factorization using perspective camera model, if all
the depths are close to equal, then an approximation to the
reprojection error scaled by the common value of projective
depths is minimized [5, p. 446]. Depths in an image pair can
be estimated using method [13] from the epipolar geometry
(EG). If the image pairs form a graph without cycles (tree),
depths from individual image pairs can be easily chained
and the result is known to be a set of depths consistent with
all used EGs [13] even in case of missing data [3]. Never-
theless, in practical situations, many more EGs are available
than the m − 1 ones exploitable in an acyclic graph. Us-
ing overdetermined constraints on depths from all (reliable)
EGs would naturally (i) result in better depth estimates and
(ii) allow to relate data in image pairs within cycles, which



concerns not only closed sequences but any wide base-line
setup.

Cycles appear often in practice. For example in a closed
sequence taken around an object, there is typically no point
visible in all the images, as can be seen in figure 4. Al-
though all subsequent cameras are close to each other in the
graph of EGs, whatever tree is chosen, some cameras get al-
ways located at large distance in the tree graph. Particularly,
the larger is the amount of images of a scene available, the
more cycles are likely to appear in the data.

Let [λipx
i
p]
i∈it
p∈pt = U diag(σ1, . . . , σz)V

> be the SVD fac-
torization. P̂t from (10) are estimated as P̂t = U(:, 1 : 4). X̂t
from (11) are estimated as X̂t = V(:, 1 : 4)>.

4.1. Overdetermined Depths

Consider EG between images i and j. Then, the corre-
sponding image points can be scaled by γij,kp as
[
γij,11 xip1

. . .γij,1z xipz
γij,21 xjp1

. . .γij,2z xjpz

]
=

[
P̂ij,1

P̂ij,2

] [
X̂p1 . . . X̂pz

]
(13)

where the right-hand side of the equation is the structure and
motion in some projective frame. Depths in system 13 can
be arbitrarily row- and column-wise rescaled [13]. How-
ever, whatever scaling is chosen, the connection to the scal-
ing of the overall system of depths for all the data, λip, can
be written as
[
rij [λip1

. . . λipz ]
sij [λjp1

. . . λjpz ]

]
=

[
cij1

(
γij,11

γij,21

)
. . . cijz

(
γij,1z

γij,2z

)]
(14)

where r, s and c are some non-zero scalars defined for each
image pair ij individually. Eq. 14 relates all equivalent scal-
ings corresponding to one class of projective reconstruc-
tions. System 14 consists of 2 by z equations. c’s can be
eliminated by dividing one row by the other:

rij/sij
[
λip1

λjp1

λip2

λjp2

. . .
λipz
λjpz

]
=
[
γij,11

γij,21

. . .
γij,1z

γij,2z

]
.

After substituting unknowns rij and sij by αij = rij/sij

and knowns γ’s by gijp =
γij,1p

γij,2p
, the equations can be rewrit-

ten as

αij
[
λip1

. . . λipz
]

=
[
gij1 λ

j
p1
. . . gijz λ

j
pz

]
. (15)

These z equations are bilinear in unknowns αij and λ’s.
They can be “linearized” by applying logarithm to both
sides of the equations, which is a reasonable operation be-
cause bothα and λ’s can be expected to be (i) positive due to
oriented projective geometry (cheirality) [15] and (ii) close
to one, see figure 3a, where the log function well approxi-
mates function x− 1, see figure 3b:

logαij +
[

logλip1
. . . logλipz

]
=

[
log gij1 + logλjp1

. . . log gijz + logλjpz
]
. (16)
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Figure 3. Depths estimated from all EGs: (left) depths γij,kp in the
St. Martin rotunda balanced to be close to one (right) Change in
scaling after applying logarithm: log x well approximates x− 1

After substituting

α = logα, λ = logλ, g = log g, (17)

(16) can be rewritten to

αij +
[
λ
i

p1
. . . λ

i

pz

]
=
[
gij1 + λ

j

p1
. . . gijz + λ

j

pz

]
.

Let all unknowns be rearranged to the left-hand side:

αij + λ
i

p1
− λjp1

= gij1
...

αij + λ
i

pz − λ
j

pz = gijz .

(18)

After solving system 18, both λ’s and α’s can be computed
and back-substituted using (17). System 18 is sparse and
hence can be solved efficiently by a sparse solver.

The MM of all scenes in this paper except the Dinosaur
sequence were obtained from pair-wise matches satisfying
EGs between distinguished regions of various types de-
tected in image pairs in a way similar to [3]. The thresh-
old on distance to the epipolar lines was set to one pixel.
All image triple and image pair constraints with more than
some given number of points were used. We tried also us-
ing only some of them with similar results. However, triple
constraints turned out to be necessary for reaching a pre-
cise reconstruction, which is essential for metric upgrade,
as the partial reconstruction from an image triple is better
constrained.

In this paper, only results of the gluing via cameras are
shown for the perspective model. It seems that gluing via
points cannot be used in conjunction with the perspective
model. At least we did not achieve any reasonable result
using our implementation. Reconstructions from some min-
imal set of 58 image triple constraints (i.e. m − 2) and
from 166 triple constraints are shown in figure 4. In fig. 4
left, cameras 21 and 22 are reconstructed very far from each
other compared to the surrounding cameras. This is because
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Figure 4. Reconstruction of the St. George rotunda captured on 60
images, 92% data missing: (left) from a minimal set of 58 triple
constraints (right) from 166 triples and after Euclidean BA

no constraint on camera pair 21 and 22 was used. Thus, it is
clear that exploiting the cyclical structure of the data helps
much in constraining the reconstruction. Recall, this would
not be possible without depth consistency with EGs in a
graph with cycles. Reconstruction using depths consistent
only with EGs in an acyclic graph would look much worse
than that in fig. 4 left.

An example of a wide base-line scene can be seen in
fig. 1. The St. Martin rotunda is very difficult to reconstruct
because (i) both overview and detailed images are present
(see top of fig. 1a), (ii) some cameras are positioned very
close to each other while some are very distant with wide
base-lines (see middle of fig. 1a), (iii) it is a closed sequence
around an object but at the same time there are many addi-
tional cycles (see bottom of fig. 1a), making the task per-
haps unsolvable for sequential algorithms. The strong per-
spective effects make the task perhaps unsolvable for batch
method [4] as it assumes affine cameras and slow motion.

4.2. Metric Reconstruction

Robust state-of-the art metric upgrade [11] was applied.
However, if some cameras did not move along a fluent path
with roughly the same distances between the consecutive
frames, see first 8 cameras in figure 4 right, the Nister’s pre-
conditioning based on this assumption could not provide a
starting point sufficient for his optimization process to reach
a good minimum. Thus, for non video-sequences, exhaus-

Figure 5. Metric reconstruction of the Dinosaur open sequence us-
ing the perspective camera model. Points reconstructed from the
whole tracks (top) and from the tracks via images in the used im-
age triple constraints (bottom). The mean reprojection errors are
0.50 pxl (top) and 0.25 pxl (bottom). Note that the outlying points
in (top) could prevent converging BA to the global minimum

tive search of the plane at infinity by sampling the space of
its possible positions [6] was used instead. Even better re-
sults were achieved when exploiting the knowledge of ratios
of focal lengths in the criterion function.

After the metric upgrade, most 3D points had positive
the fourth coordinate. Only these were used in Euclidean
bundle adjustment. Intrinsic parameters of all cameras were
set to square pixel, principle point at image center and focal
lengths to known ratios. The BA was done on a few points
from each sampled submatrices yit

pt with 3D points param-
eterized so that the fourth coordinate equals one. Because
each bundled point was visible in two or three images only,
there could be no outliers across many images (see figure 5)
which could significantly obstruct converging to the global
minimum. Results of the Euclidean BA can be seen in fig-
ures 1 and 4 right.

This method provides a complete internal and exter-
nal camera calibration and a sparse set of reconstructed
points. Cameras can be used for dense reconstruction as
in [3]. Fig. 6 shows examples of disparity maps com-
puted by method [8] on the Dinosaur and the St. George ro-
tunda. The density approximation to point clouds, so called
“fish-scales”, shows that point clouds from individual im-
age pairs fluently fade one into another thanks to correct
gluing of partial reconstructions. For the Dinosaur, absence
of any rough transition suggests reaching the global mini-
mum since we did not use the constraint that the sequence
was closed but the result is a closed camera trajectory.

Solving (10) using Matlab 6.5’s EIGS took 0.25 sec-
onds for 60 images of the St. George rotunda (Pentiu-
mIV@2.8GHz). Solving (18) using Matlab’s QMR took
about one minute even for about 100 000 unknown projec-



Figure 6. Application to dense matching (top) and dense recon-
struction (bottom) on the Dinosaur sequence and the St. George
rotunda: density of disparity map shows that the epipolar lines are
correct

tive depths. This time was reduced to seconds by sampling
only a few points from each submatrix while achieving sim-
ilar results.

5. Discussion and Conclusions

A new method for fitting a low-rank matrix to a ma-
trix with missing data was presented. Its correctness was
demonstrated on an application to 3D reconstruction. In
this approach, both affine a perspective camera models can
be used. Affine model has the advantage of simplicity and
stability if used on images taken by a distant camera. A lin-
ear method [4] is sufficient to get internal parameters close
to the real ones to initiate the Euclidean BA. On the other
hand, the model gives high reprojection errors for a wider
field of view. This does not happen when using the per-
spective camera model. Even very wide base-line scenes
are reconstructed with reprojection errors around one pixel
already by the linear method. Although using projective
depths in the richer perspective model brings necessity to
estimate them, we showed that it is possible to estimate
them reliably and consistently with all used EGs. More-
over, it has been shown that the richer perspective camera
model does not overfit when used in our method.

There is a certain similarity between our method and Lo-
cally Linear Embedding (LLE) [12], although the tasks sub-
stantially differ. Our method is global in the same sense
as LLE. Once the local structures (partial reconstructions)

are chosen and fixed, they are combined by solving one
optimization problem which has a global minimum as the
eigenvalue problem is solved.

The perspective model can model omnidirectional cam-
eras once points in omnidirectional images are attached to
rays in space [10]. Other applications with missing data are
possible, e.g. 3D reconstruction of non-rigid scenes. See
more reconstructed scenes at [1].
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