
CENTER FOR
MACHINE PERCEPTION

CZECH TECHNICAL
UNIVERSITY

R
E

P
R

IN
T

Line Reconstruction from
Many Perspective Images by

Factorization
Daniel Martinec and Toḿǎs Pajdla
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Abstract

This paper brings a new method for line reconstruction from
many perspective images by factorization of a matrix con-
taining line correspondences. No point correspondences
are used. We formulate the reconstruction from line cor-
respondences in the language of Plücker line coordinates.
The reconstruction is posed as the factorization of3m × n
matrix S into the productS = QL of 3m × 6 projection
matrixQ and6×n line matrixL, both satisfying Klein iden-
tities. The matrixS contains coordinates of lines detected in
perspective images. Similarly to reconstruction from point
correspondences in perspective images, the matrixS has to
be properly rescaled before it can be factorized. We pro-
pose a scaling of image line coordinates based on trifocal
tensors that is analogical to the scaling proposed by Sturm
and Triggs for points. We propose anSVD based factoriza-
tion enforcing Klein identities onQ andL in a noise-free sit-
uation. We show experiments on real data that suggest that
a good reconstruction may be obtained even if data is noisy
and the identities are not enforced exactly. We also discuss
an extension of the method for images with occlusions.

1. Introduction

Reconstruction from image point correspondences using
factorization [11, 2] allows an elegant and uniform treat-
ment of the reconstruction problem if more than four im-
ages of the scene are available. With more than four images,
tensorial approach to the geometry of multiple cameras [2]
becomes less elegant as there is no single algebraic equation
that would contain coordinates from more than four views.
In this paper we extend the reconstruction by factorization
to line correspondences in many perspective images.

∗This research was supported by the grants CTU 0209313, MSMT
Kontakt 22-2003-04, GACR 102/01/0971, Benogo IST-2001-39184, Ak-
tion 34p24, and MSM 212300013. Andrew Zisserman from the University
of Oxford kindly provided the House data, Tomá̌s Werner from the Czech
Technical University in Prague provided the automatic line matches in the
House scene and the routine for the line bundle adjustment, and Martin
Urban from the Czech Technical University in Prague provided the code
for step 2 in Algorithm 1.

Originally proposed for point correspondences in ortho-
graphic images by Tomasi and Kanade [11], the factor-
ization has been later extended for point correspondences
in perspective images by Sturm and Triggs [10]. Another
line of research dealing with occlusions in orthographic im-
ages, i.e. missing data in the point measurement matrix, has
been also started by Tomasi and Kanade [11] and further
improved by Jacobs [4] who provided a valuable linearly-
algebraic insight into the problem. Martinec and Pajdla [8]
extended works of Sturm and Triggs and Jacobs and worked
out the factorization from perspective images with occlu-
sions, which can solve any image set that provides a track-
able image point measurement matrix. The last missing bit
of work has been added by Huynh and Heyden [3] who
showed how to exploit RANSAC for robust completion of
point measurement matrix for orthographic cameras. By
extending the work by Martinec and Pajdla to deal with
outliers [7], a completely general and robust reconstruction
technique has been obtained for point correspondences in
perspective images.

It is possible to reconstruct lines in space from line cor-
respondences in images [2]. Line correspondences are at-
tractive for a number of reasons. There are many lines in
man-made environments. Lines can be sometimes detected
more precisely than points. Lines are less affected by occlu-
sions as projections of different parts of the same line can
be used to reconstruct it.

Quan and Kanade [9] proposed a factorization based re-
construction of lines from affine images. They have used
a line representation that allowed them in an orthographic
setup to transform the problem of finding line directions into
a problem of a point factorization from 1D projective cam-
era. Kahl and Heyden [5] proposed factorization of points,
lines and conics under affine projection. No attempt for
addressing the problem in the perspective setup has been
known up to now (see, e.g., [6]).

In this paper we formulate the reconstruction from line
correspondences by factorization in a perspective setup. We
concentrate on giving the formulation of the problem and on
demonstrating in experiments that meaningful results are
obtained. We show that a suitable formulation leads to a
well posed problem that can be solved even in the presence
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Figure 1:Line correspondences.Line correspondences can often be established even though line end-points are occluded

of noise without solving every step optimally in full gener-
ality. We concentrate here only on the situation when there
is no occlusion in the scene. An extension towards occlu-
sions is possible but will be presented elsewhere. Founda-
tions for our method follow.

First, we use Pl̈ucker coordinates to represent lines in
three dimensional space as well as in images. Plücker co-
ordinates of lines in space arelinearly projected to Pl̈ucker
coordinates of lines in images, exactly the same way as ho-
mogeneous 3D point coordinates are projected linearly into
homogeneous 2D point coordinates. Only thanks to the lin-
earity of the projection, a factorization is possible.

Second, a scaling method has to be proposed in order to
properly scale image line coordinates in the line measure-
ment matrix. We propose a line scaling technique that ex-
ploits trifocal tensors of line correspondences across triplets
of views.

Third, the representation of lines by Plücker coordinates
requires that the elements of a six dimensional Plücker vec-
tor satisfy a quadratic identity to represent a line in space.
Thus, it is not enough to factorize the line measurement ma-
trix by a simpleSVD-based factorization but it is necessary
to do it so that the reconstructed representation of structure
and motion satisfy all necessary identities. We show how to
achieve it for a noise free data by a simple transformation
of anSVD-based factorization into the coordinate system of
a reconstruction from one triplet of images.

Finally, everything becomes more difficult when noise
is present in data as it is more difficult to enforce the re-
quired identities and to obtain a consistent representation in
an optimal way. We do not show how to do it optimally
here but we show that even a simple, and probably not very
optimal, technique provided a meaningful reconstructions.
This technique can be used to initialize a non-linear bundle
adjustment. We believe that there is a good reason to hope
that much better results would be obtained when employing
better estimation techniques to cope with noise.

The principal difference of this paper to Triggs’ factor-

ization method on lines [13] is in representation of lines.
Method [13] represents a line by a pair of points which are
transfered from the first into other images using the epipolar
geometries known from the trifocal tensors (so-called point
transfer). The advantage of [13] is that both points and lines
can be used. The price for not doing the point transfer in our
method is payed by the necessity for enforcing the nonlinear
identities.

The paper is structured as follows. In section 2, line rep-
resentation by Plücker coordinates is adopted and the fac-
torization based reconstruction from line correspondences
in perspective images is formulated. The main idea of the
approach is spelled out in section 3 and the two key compo-
nents of the approach, the scale factors estimation and the
enforcing the Klein identities, are described in more detail.
Experimental results are shown in section 5 and further ex-
tensions are discussed in the concluding section.

2. Problem Formulation

Suppose a set ofn 3D lines visible inm perspective images.
The goal is to recover 3D structure (line locations) and mo-
tion (camera locations) from the image measurements. This
recovery will be calledscene reconstruction. No camera
calibration or additional 3D information will be assumed,
so it will be possible to reconstruct the scene up to a projec-
tive transformation of the 3D space.

Let Ll be the unknown Plücker line coordinates [2] of
the 3D lines,Pi the unknown3 × 4 camera projection ma-
trices, andlil the measured homogeneous coordinate vec-
tors of the image lines, wherei = 1, . . , m labels images
andl = 1, . . , n labels lines. No point correspondences are
used. An example of such line correspondences is shown in
Figure 1.

Let Xp denote the homogeneous coordinate vectors of
the 3D points and letxi

p denote their projections into the
images. The basic image projection equation says thatxi

p

are the projections ofXp up to unknown scale factorsλi
p:



λi
px

i
p = PiXp. A similar image projection equation holds

for lines and says thatlil are the projections ofLl up to un-
known scale factorsγi

l

γi
l l

i
l = QiLl (1)

whereQi are the line projection3× 6 matrices [1] of rank 3
given by

Qi =

 Pi2 ∧ Pi3

Pi3 ∧ Pi1

Pi1 ∧ Pi2

 (2)

wherePir> are the rows of the point camera matrixPi, and
Pir ∧ Pis are the Pl̈ucker line coordinates of the intersection
of the planesPir andPis [2, page 187].

The complete set of image projections can be gathered
into a matrix equation:
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whereL andQ stand for structure and motion, respectively.
The3m × n matrix S will be called therescaled line mea-
surement matrix. Only lil are available from perspective im-
ages. Scalarsγi

l are unknown. The task is to find scalars
γi

l so that matrixS can be factorized into the matrices
Q ∈ R3m×6 andL ∈ R6×n such that every row ofQ and
every column ofL as a vector, say(v1, v2, v3, v4, v5, v6)>,
lies on the Klein quadric, i.e.

v1v4 + v2v5 + v3v6 = 0 (3)

which is the necessary condition for representing cameras
and lines in Pl̈ucker coordinates.

3. The Main Idea of the New Factor-
ization Algorithm

A factorization method requires that all elements ofS ma-
trix are known. Therefore, the scale factors inS have to be
estimated beforeS can be factorized. The necessary condi-
tion for S being factorizable is that it is of rank six. How-
ever, it is not a sufficient condition and the matrices result-
ing from a plain factorization into a product ofQ̂ ∈ R3m×6

andL̂ ∈ R6×n by SVD as in eqs. (9) and (10) do not have to
satisfy the Klein identities (3) on rows of̂Q and columns of
L̂, respectively. The situation can be remedied by finding a
projection of the respective vectors onto the Klein quadric.

If S is a valid rescaled line measurement matrix, thenQ
andL satisfying (3) exist. MatricesQ andL can always be

1. Estimate the trifocal tensor T using line correspon-
dences [2].

2. Compute proj. matrices P, P′, and P′′ using T [2, 14].

3. Compute proj. matrices Q, Q′, and Q′′ using eq. (2).

4. Compute Ll as intersections of the back-projected
image lines [2] i.e. assemble the matrix W

W =

 l>P
l′>P′

l′′>P′′


and set Ll = v(:, 3)∨v(:, 4) where [u, s, v] = SVD(W)
and X1 ∨X2 is a join of 3-space points X1 and X2
into the line in Plücker coordinates [2].

5. Estimate scale factors γl, γ′l , and γ′′l according to

γi
l =

l̄il · lil
‖lil‖2

(5)

where l̄il are the projected lines Ll into the image i,
l̄il = QiLl.

Algorithm 1: Scale factor estimation from a triple of views

obtained from̂Q and L̂ by some transformationH ∈ R6×6,
rank H = 6, asQ = Q̂H andL = H−1L̂ for each factorization
pair is bound by a change of the basis

S = Q̂H︸︷︷︸
Q

H−1L̂︸ ︷︷ ︸
L

(4)

3.1. Estimating the Scale Factors
The scale factor estimation is done by computing partial re-
constructions from triples of images using trifocal tensors
and re-projecting the reconstructions back into the images.
Scale factors are computed from the difference between the
reprojected and the original image lines. Eq. (5) is the best
solution forγi

l in the least squares sense, which is a varia-
tion on eq. (3) in [10].1 The whole algorithm for scale factor
estimation is summarized in Algorithm 1.

Scale factors resulting from independent partial recon-
structions from triples of views may be mutually inconsis-
tent, which means that scale factors of a given image line,
resulting from different triplets of views, differ. Therefore
triples of views must be established so that they overlap by
at least one view and in the sense that such overlaps form

1As pointed out by one of the reviewers, the scale factors can be esti-
mated without explicit reconstruction, which is, however, needed in sec-
tion 3.2, in the following way. Given consistent scales for the epipoles
(in the sense of [10, 13, 12]), a consistent scaling for the image lines is
γili · eij = −γj lj · eji for anyi, j.



one connected component. Rescaling eqs. (1) of all triplets
of views can be then chained together for any given line
l over m views by column rescaling to give a consistent
(γ1

l , γ2
l , . . . , γm

l )> [9].

3.2. Enforcing the Klein quadric identities
The Klein quadric identities (3) on rows ofQ, resp. columns
of L, can be written in a matrix form as

diag(QErQ>) = 03m×1, resp. diag(L>ErL) = 0n×1, (6)

where the6× 6 matrixEr is of the form

Er =
[
03×3 I3×3

I3×3 03×3

]
andI3×3 is the identity matrix. Eqs. (6), after applying (4),
become

diag(Q̂HErH>Q̂>) = 03m×1, resp.
diag(L̂>H−>ErH−1L̂) = 0n×1,

(7)

which is quadratic in terms of elements ofH and could be
solved only nonlinearly. Fortunately,H can be found by an-
other way. The following holds.

Proposition 1 LetS be a rescaled line measurement matrix
(no noise in data) composed from non-degenerate perspec-
tive images of lines in a scene taken by cameras in general
positions. LetS = Q̂L̂ be a plain factorization ofS by SVD

(not necessarily satisfying Klein identities (6)). Let

S9×n = Q̇9×6L̇

be a partial reconstruction of the lines in the scene from a
triple t of images obtained by Algorithm 1 (i.e.Q̇9×6 and L̇
satisfy the Klein identities (6)). If matrixH satisfies

Q̂9×6H = Q̇9×6 (8)

thenQ = Q̂H as well asL = H−1L̂ satisfy the Klein identi-
ties (6).

Proof: Columns of L̇ satisfy Klein identities since they
are equal to coordinates of space lines reconstructed from
a triple of images via a trifocal tensor.L = H−1L̂ = L̇
thus satisfies Klein identities also. In general, lines ofL̇ are
linearly independent. Therefore, there is exactly oneQ̇ of
coefficients that linearly combines the rows ofL̇ into S as
S = Q̇L̇. MatricesQ̂9×6, Q̇9×6 are in general of rank six and
thus (8) fixesH uniquely. Since there is exactly oneQ̇ so that
S = Q̇L̇ the linear mapping bringinĝQ into Q (which exists
by the argument given at the next paragraph) equalsH. 2

When there is noise in the data,H obtained according to
eq. (8) does not have to fulfill the Klein identities (7). Non-
linear bundle adjustment with initial solutionH should be

1. Establish triplets of views among m views such that
the triplets overlap as explained in section 3.1. For
each triplet of views, compute the scale factors using
Algorithm 1.

2. Chain the rescaling equations (1) of all triplets of
views together for any given line l over m views
to give a consistent (γ1

l , γ2
l , . . . , γm

l )>. Denote the
triple whose scale factors have not been changed dur-
ing the rescaling by t.

3. Factorize complete rescaled line measurement matrix
S =

[
γi

l l
i
l

]
i=1..m,l=1..n

into matrices Q̂ and L̂ as

Q̂ = u(:, 1 : 6) (9)

L̂ = s(1 : 6, 1 : 6) v(:, 1 : 6)> (10)

where [u, s, v] = SVD(S).

4. Find the transformation matrix H transforming the
rows of Q̂ corresponding to triple t into the basis of
the partial reconstruction of triple t, i.e. Q̂i

Q̂j

Q̂k

 H =

 Q
Q′

Q′′


where Q, Q′, and Q′′ come from scale factor estimation
for triple t = (i, j, k)>, step 3 in Algorithm 1.a

5. Apply transformation H so that the result is close to
the Klein quadric: Q̃ = Q̂H, L̃ = H−1L̂.

6. Project rows of Q̃ and columns of L̃ onto the Klein
quadric as in sec. 3.2 to gain Q and L, respectively.

aAn alternative way is to findH asH = G−1 whereL̂>G = Lt
>, which

appeared to be less sensitive to noise.

Algorithm 2: Scene reconstruction from lines

used. Another, but only approximate, solution is obtained
by finding some linear projections of each row ofQ̂, resp.
column ofL̂, onto the Klein quadric. If there is noise in the
data, matrixH from Proposition 1 does not have to exist.
However, it is always possible to findH using a partial re-
construction from three views so that eq. (8) holds. It turned
out in our experiments (see sec. 5) that although rows ofQ̂H,
resp. columns ofH−1L̂, do no satisfy the Klein identities,
they are close to the Klein quadric so that a good solution
can be obtained by projecting them onto the Klein quadric.

Projection onto the Klein quadric was done in the fol-
lowing way. For each view,i, system of linear equations

lil
>
PiX̃l,p = 0 for l = 1 . . n, p = 1, 2 (11)

was used to estimate point projection matrixPi from image
measurements and matrix̃L = H−1L̂ whereX̃l,p ∈ R4 are



SceneCubes 5 images [576× 768], 14 correspondences, manual detection
Method\ γi

l estimation sequence, two view overlaptwo central images no factorization
Factorization 8.69 / 155.14 / 2.46 6.03 / 74.24 / 2.81
Linear method 3.80/ 24.03 / 2.45 2.42/ 13.41 / 1.66 1.89/ 11.09 / 1.08
Linear method + BA 0.47/ 2.12 / 0.34 0.47/ 2.12 / 0.33 0.47/ 2.12 / 0.33

SceneHouse (Oxford) 6 images [576× 768], 31 correspondences, automatic detection
Method\ γi

l estimation sequence, two view overlaptwo central images no factorization
Factorization 4.62 / 42.98 / 2.40 3.38 / 30.17 / 1.91
Linear method 1.57/ 23.24 / 0.77 0.80/ 10.53 / 0.44 1.03/ 13.33 / 0.52
Linear method + BA 0.23/ 1.32 / 0.17 0.23/ 1.32 / 0.17 0.23/ 1.32 / 0.17

Figure 2:Experiments with real scenes.Mean / maximal / median reprojection errors are shown

some two columns of the dual Plücker matrix ofL̃l. Finally,
each line on the Klein quadric was estimated by intersecting
backprojections of the image measurements using all point
projection matrices as in step 4 of Alg. 1. Our new method
for scene reconstruction from lines is summarized in Alg. 2.

4. Implementation Details
On account of good numerical conditioning, several nor-
malizations of the data and balancing similar to those in [10]
need to be performed.

5. Experiments
The new method has been tested on a simulated scene and
on two real scenes. No point correspondences have been
used for the line reconstruction by Algorithm 2. The re-
constructed 3-space lines were reprojected into the images.
The reprojection error of a line was computed as the mean
of Euclidean distances between the end-points of the origi-
nal image line and the reprojected reconstructed line.

An artificial scene was used for an experiment with sim-
ulated data. 20 images of 30 lines in space have been ob-
tained from different viewpoints. The reconstruction was
precise in absence of noise and the mean error of the recon-
struction grew linearly with the variance of the added noise.

The tables describing each real experiment in Figure 2
include scene name, number of images and their sizes, num-
ber of correspondences together with the way of their detec-
tion. The reconstruction method was used in two setups of
image triplets: (i) sequence with two view overlap and (ii)
two central images. For each setup, reprojection errors of
the plain factorization intôQL̂, of the linear method, and of
the non-linear line bundle adjustment initiated by the linear
method are shown. For comparison, the following simple
reconstruction method without factorization is given. (i)L
from a partial reconstruction of an image triple was used
to estimate point projection matrices using eq. (11). Then,
(ii) backprojections from all images were intersected as de-
scribed in section 3.2.

In the Cube scene, five images of cubes on a checker-
board have been obtained from different viewpoints, three
of them can be seen in Fig. 1. 14 correspondences of lines,
at least partially visible in all images, have been detected
manually. Mean, resp. maximal, reprojection errors of the
linear method of the better setup were 2.42, resp. 13.41,
pixels. The House scene was obtained on six images, see
Fig. 3. The original lines are drawn in white and the re-
projected ones in black color. Mean, resp. maximal, repro-
jection errors of the linear method of the better setup were
0.80, resp. 10.53, pixels.

In both experiments with real scenes, the way of scale
factor estimation with two central images provided a better
solution. Both factorizations of the Cube scene provided
worse solutions than the reconstruction without factoriza-
tion. This may be due to a little amount of (14) correspon-
dences and unprecise manual line detection. On the other
hand, 31 automatic correspondences in the House scene en-
abled improvement of the factorization by 20% compared
to the simple method.

6. Summary and Conclusions
A new linear method for line reconstruction via a factoriza-
tion of a line measurement matrix has been proposed and
tested on simulated and real scenes. The method is, in prin-
ciple, capable to reconstruct lines even though there are no
corresponding points on the lines available. We have used
line projection by a perspective camera to formulate the re-
construction as a factorization and showed how to carry it
out in a noise free situation.

We have pointed out that finding the optimal reconstruc-
tion w.r.t. noise in data is, as usual, a non-linear task but
demonstrated that the vectors obtained by plainSVD factor-
ization followed by a transformation considering the con-
straint (3) provide a good approximate solution that may be
hoped as a starting point for nonlinear bundle adjustment.

The line factorization method can be straightforwardly
extended to deal with occluded lines using Jacobs’ algo-
rithm [4] as it was performed in [8]. There exist many ways



Figure 3: Line reconstruction from many images.No point correspondences have been used for the line reconstruction by
Algorithm 2. Mean / maximal reprojection errors of the method without bundle adjustment were 0.80 / 10.53 pxl

how to establish triplets of views in step 1 of Algorithm 2.
In presence of noise, reconstructions resulting from differ-
ent sets of triplets differ in the reprojection error. Similar
heuristics for choosing the best set of triplets based on the
structure of the missing data to those in [8] can be used.
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