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Abstract
This paper presents a new technique for estimating a multi-
view reconstruction given pair-wise Euclidean reconstruc-
tions up to rotations, translations and scales. The partial
reconstructions are glued by the following three step proce-
dure: (i) Camera rotations consistent with all reconstruc-
tions are estimated linearly. (ii) All the pair-wise recon-
structions are modified according to the new rotations and
refined by bundle adjustment while keeping the correspond-
ing rotations same. (iii) The refined rotations are used to
estimate camera translations and 3D points using Second
Order Cone Programming by minimizing the L∞-norm. We
introduce a new criterion for evaluating importance of an
epipolar geometry in influence on the overall 3D geometry.
The estimated importance is used to reweight data in the
above algorithm to better handle unequiponderantly cap-
tured images. The performance of the proposed method is
demonstrated on difficult wide base-line image sets.

1. Introduction
This paper makes a step towards automatic reconstruction
procedure providing a high quality reconstruction from a
difficult image set. This task is difficult and has been ex-
tensively studied for last two decades [8]. In this paper we
particularly focus on the following problems:

• An extreme occurrence of the missing data. In practice
it may happen that there are no points visible in more
than two images in a (sub)set of images, see figure 1.

• Degenerate situations like large planes in the image
may prevent RANSAC [8] from choosing the non-
degenerate full 3D model but with smaller support than

∗This research was supported by The Czech Academy of Sciences
under project 1ET101210406 and by the EU projects eTRIMS FP6-IST-
027113 and DIRAC FP6-IST-027787. Richard Szeliski from Microsoft
Research provided the ICCV’05 Contest data. Jana Kostková from the
Czech Technical University provided routines for dense stereo. Our bun-
dle adjustment routine was based on publicly available software [12].

Figure 1: An extreme case of the missing data: (top) im-
age correspondences shown in three colors corresponding
to three image pairs. There is no point visible in three im-
ages. (bottom) Reconstruction of the boxes from two views

of the model given by homography [4]. Another de-
generate situation arises when images are taken from
one place just by zooming or rotating the camera.

• Some parts of the object may be captured on much
more photographs than some other parts. We have ob-
served that in such a case, without a good estimate of
the focal length, the standard bundle adjustment [8]
may break the reconstruction into discontinuous parts,
see figures 2 and 4.

Note that one might argue that in order to obtain a good
model, one should take appropriate images rather than ac-
cept bad ones, and that even a non-expert can be easily
guided to take better images. Nevertheless, cases where bad
images have to be accepted may indeed be relevant some-
times, e.g. when modeling a building or monument that can
not be easily photographed from all around.
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Figure 2: Incorrect reconstruction provided by the stan-
dard bundle adjustment [8] for non-equiponderantly cap-
tured images of the Head set (left) low amount of corre-
spondences on the back of the hand. Only inliers w.r.t. the
final 3D-model shown (right)

Previous Work

Enumeration of multiple view reconstruction methods can
be started with factorization methods. First Tomasi &
Kanade [24] used factorization on affine cameras. Ja-
cobs [10] improved handling occlusions. Extension for per-
spective cameras was given in [23]. Projective depths of
points, which correspond to the perspective effect, are itera-
tively improved in iterative factorization methods, e.g. [14].
Martinec & Pajdla [15] reformulated Jacob’s [10] approach
and enhanced numerical stability. In [23, 20, 15], the per-
spective effect is handled using epipolar geometry (EG)
while other methods like [6] use trifocal tensors.

In all the above named methods, points visible in at least
three images were used to glue partial reconstructions (es-
timating an EG can be viewed as equivalent to having the
3D reconstruction). For the case when each point is visible
in just two images, like in fig. 1, it seems that only meth-
ods of Avidan & Shashua [3] and of Uyttendaele et al. [26]
might be used. In [3], partial projective reconstructions rep-
resented by fundamental matrices were glued together while
minimizing an algebraic error on parameters of the funda-
mental matrices.

It is not clear how well would method [26] work in a
wide base-line setup as the image set in [26] was densely
captured on a video enabling reliable detection of self-
intersecting paths and vanishing points, which were used
to make rotations consistent. Method [15] must fail because
the depths estimated by individual EGs cannot be made con-
sistent as this consistency can only be achieved via points
shared by multiple EGs (i.e. points visible in at least three
images). Gluing 3P3 problems is impossible when no point
is visible in three views.

Recently, methods minimizing the L∞-norm appeared in

vision community. In this paper we use Kahl’s method [11]
based on Second Order Cone Programming (SOCP) which
is a standard technique in convex optimization. Method [11]
is capable of estimating both camera translations and point
positions given rotations.

There are several methods on distinguishing between full
3D EG and degenerate cases like planes, see, e.g., [25, 4].

This paper proposes a new algorithm with the advantage
that no point visible in three or more views is required. It
consists of three steps: (i) a linear estimate of consistent ro-
tations (ii) refinement of the estimate and (iii) camera trans-
lation and point recovery using SOCP [11]. Its first step is
a variation on [15] for the Euclidean case. In our approach,
the partial reconstructions are glued via cameras. All partial
reconstructions are glued at the same time thus exploiting
all data equiponderantly.

Our method differs from [15] in that the estimated trans-
formation between the coordinate system of a partial recon-
struction and the coordinate system of the reconstruction of
all cameras is more simple: only rotation, translation and
scale are needed instead of full projective 4 × 4 homogra-
phies in [15]. Second advantage of Euclidean over projec-
tive reconstruction is that no Euclidean upgrade [19, 9] is
needed. Euclidean upgrade becomes a very difficult task on
data like presented here. Even if the projective reconstruc-
tion is successfully transformed so that a reasonable sub-
set of points gets in front of cameras, the internal camera
parameters get rather far from what is desired (e.g. square
pixel) making bundle adjustment prone to stucking in local
minima. In [15], the algebraic (SVD) error is minimized in-
stead of the reprojection error. Minimizing an algebraic er-
ror is also the case of [3]. Compared to these methods, min-
imizing inconsistency between rotations in the Euclidean
space promises reaching a higher stability.

It is known that rotation can be estimated first and trans-
lation can be estimated using it afterwards [26]. In [26],
differences between rotations parameterized using quater-
nions were non-linearly minimized while using some addi-
tional constraints like vanishing points. In our method, 3×3
matrices are used to parameterize rotations. Although these
matrices describe the class of all homographies, the rotation
obtained as the closest rotation to such homography in the
least squares gives results sufficient for our task, as rotations
are subsequently refined in step (ii).

The new method on linear estimation of consistent cam-
era rotations will be explained in section 3.2 and rotation re-
finement in section 3.3. Obtaining consistent camera trans-
lations and scales comes in section 3.4. A new criterion on
influence of an EG on the overall shape will be introduced
in section 4 and its application will be shown in section 4.1.
Experiments are reported in section 5. Discussion and sum-
mary in sections 6 and 7, respectively, conclude the paper.



2. Problem Formulation
Suppose m images captured using a standard camera with
focal lengths known1 up to an unknown overall scale factor.
Points of interest are found in all images and matched be-
tween all image pairs using a similarity measure (see more
details on our experiments in section 5) There are mis-
matches in image measurements. The goal is to recover
cameras and 3D points.

3. The New Method
The 6-point RANSAC [22] is applied to all image pairs.
When the two corresponding focal lengths differ, one of
the images is rescaled so that the focal lengths become the
same. The overall scale of the focal length is then estimated
as the mean of the estimates given by the 6-point algorithm
weighted by the square of the EG support. Then, the 5-point
algorithm [18] is run on all image pairs.

3.1. RANSAC on EG and a Dominant Plane
An epipolar geometry unaffected by a dominant plane is
found using [4]. The inliers are used as the pool for draw-
ing samples in calibrated RANSACs. This scheme is ap-
plied to the 6-point algorithm [22] as well as to the 5-
point algorithm [18]. Due to unstability of estimate of
the focal length [22], the degenerate samples (all points in
the dominant plane provided by [4]2) should be detected
and thrown out. If all points lie in a plane, e.g. two im-
ages in a panorama, the correct model cannot be estimated.
Thanks to the small amount of outliers in the pool, the 5-
point RANSAC has a bigger chance to find the correct non-
degenerate EG, especially with a substantial error in the fo-
cal length. It can be seen in figure 3 that estimates of the
overall scale of the focal length is quite unreliable (see also
beginning of section 4).

3.2. Consistent Rotations
Let Ai denote the submatrix of A composed of elements in
rows i. Omitting superscript means taking all rows. Sup-
pose T pair-wise Euclidean reconstructions are given for
camera indices i1, i2, . . . , iT where it ∈ {1, 2, ...,m},
|it| = 2 for each t.3 Let the cameras of the tth recon-
struction be denoted as P̃t, P̃t ∈ R6×4. Each reconstruction
is generally in a different coordinate system. It has been
shown in [15, Eq. (4)] that the coordinate systems are re-
lated by homographies, Ht, which can be linearly estimated

1e.g., from the EXIF header of the JPEG file
2One might check if all the points lie on another (smaller) plane. Note

that such samples cannot win in RANSAC.
3Here, only equations for pair-wise reconstructions are shown. Equa-

tions for triples, etc. are similar.

Figure 3: Focal length estimates from the 6-point algorithm
used as described in section 3.1 on the Head and Contest
sets. The horizontal line corresponds to the estimate of the
overall focal length

together with a set of all cameras, P ∈ R3m×4, in the same
(global) coordinate system:

P̃1H1 = Pi1

...
P̃THT = PiT .

(1)

For cameras are calibrated, after denoting indices of the
tth pair-wise reconstruction as i and j, {i, j} = it, the tth

equation in (1) can be written as[
Ki [ I | 0 ]
Kj [ Rt | tt ]

] [
ht ut

01×3 st

]
=

[
Ki [ Ri | ti ]
Kj [ Rj | tj ]

]
. (2)

Here, the matrix of internal parameters, Ki ∈ R3×3, is
known with focal length estimated as described in sec-
tion 3.1, R is 3 × 3 rotation, t ∈ R3 is translation, and
I ∈ R3×3 is an identity matrix. Homographies Ht simpli-
fied to rotations ht, translations ut and scales st. To sim-
plify notation, rotation and translation of the first camera
in each partial reconstruction has been transformed to iden-
tity and zeros, respectively, by applying appropriate rotation
and translation beforehand.

After multiplying each triple of rows by the correspond-
ing Ki−1 from the left, system (2) becomes[

I 0
Rt tt

] [
ht ut

01×3 st

]
=

[
Ri ti

Rj tj

]
. (3)

By writing only the first three columns of eq. (3), one
obtains: [

I
R1

]
h1 =

[
Ri

Rj

]
...[

I
RT

]
hT =

[
Ri

Rj

] (4)

as translation tt is multiplied with zeros in the middle ma-
trix in (3).



A solution to system (4) in the least squares was pub-
lished in [15, section 2.1]. See it for details on the solution
using Matlab’s EIGS and its numerical behaviour. It pro-
vides the closest solution to all partial rotations in the least
squares. The found solution does not represent rotations
(the 3x3 matrices are not orthonormal), but as it is close
to the true rotations of partial reconstructions, it is close to
some true rotations as well. The true rotations, R̄i, can be
found as the closest rotation in the least squares, e.g., as
R̄i = UV> where Ri = Udiag(σ1, σ2, σ3)V> is the SVD fac-
torization.

The tth equation in (4) is weighted by the root of the EG
support, as it was done in [15, Eq. (10)].

3.3. Refining Rotations
Rotations in the tth partial reconstruction are replaced by
the consistent rotations, R̄it , and translations are modified
accordingly using ht

4. Due to errors in image measure-
ments, the rotation between consistent rotations R̄i and R̄j ,
{i, j} = it for some t, does not equal the rotation between
the two cameras in the tth original partial reconstruction,
R̄i>R̄j 6= Rt. As a consequence, reprojection errors grow
after making rotations consistent. Hence, refinement using
bundle adjustment is desired. Before that, it is necessary to
either rotate points in the tth partial reconstruction by h−t

t

or triangulate them using new rotations. The latter is pre-
ferred, as lower reprojection errors are achieved.

Triangulation using the Sampson’s approximation [8] is
computed. For points reconstructed behind at least one
camera [27], the triangulation is computed again using
SOCP in the L∞-norm [11]. The reason for doing the
Sampson’s approximation first is that it is much faster.
Then, BA was applied on the tth partial reconstruction
while keeping rotations constant. When some of the points
got behind a camera during the BA, both camera transla-
tions and points were estimated using SOCP [11]. SOCP
was used here only as an emergency solution as it is time
consuming compared to BA.

Finally, full bundle adjustment on all partial reconstruc-
tions at the same time with corresponding rotation parame-
ters kept the same is run. The overall scale of focal lengths
is varied. Such a bundle adjustment (BA) is something in
between T independent BAs of T partial reconstructions,
each with two cameras, on one hand and standard BA with
all m cameras in the same coordinate system on the other
hand. Here, 2T cameras share only rotations while trans-
lations are still inconsistent. This way provides a higher
flexibility allowing to change translation in the tth partial
reconstruction almost independently of translations in the
remaining reconstructions. More precisely, translations in-

4Better results were achieved without projecting ht onto space of rota-
tions.

fluence themselves via shared rotations, which is however a
more free connection than demanding consistency between
translations. This approach should be thus less prone to
stucking in a local minimum than the standard BA.

Some EGs with small support may be found even on im-
age pairs with no overlap. These EGs are easily detected
after several (20) steps of BA as those with no inliers with
respect to the desired accuracy (1 pixel).

3.4. Consistent Translations and Scale
A straightforward way for obtaining global scales and trans-
lations is to estimate them together with rescaling and trans-
lation of each partial reconstruction in a similar way as in
section 3.2. However, our results when using this approach
were not satisfactory. The reason why this approach worked
well for rotations is perhaps that there are no significant dif-
ferences in magnitudes of the variables (there are just or-
thonormal 3 × 3 matrices in eq. (4)). On the other hand,
translations can have large differences in magnitudes across
partial reconstructions.

Therefore, the state-of-the-art SOCP method [11] was
used to estimate both camera translations and points. It
gives good results as the reprojection error is minimized
while keeping all points in front of cameras. The fact that
the L∞-norm is minimized is not a problem as final bundle
adjustment minimizing the L2-norm is run anyway.

Handling Mismatches
To add robustness to mismatches, only some points (from
more than 105 in our experiments) are sampled for bundle
adjustment and SOCP in section 3.4. To capture the overall
geometry, points are sampled so that from each image pair
having nonzero points in common, 90% of points with low-
est reprojection errors are chosen. By this simple way most
mismatches are removed while removing only a reasonable
amount of inliers and capturing the overall geometry with-
out a complicated threshold estimation.

4. Handling Unequiponderant Data
In our setup, the focal length for camera calibration was es-
timated from the data not accurately (there was about 5%
error on the Head scene). If images of the scene were cap-
tured equiponderantly so that all sides of the object occu-
pied roughly the same amount of the image data, the stan-
dard bundle adjustment converged to a satisfactory mini-
mum. However, this is not the case of the data used here.
All parts of the head sculpture were captured on quite many
images except the back of the hand where only six images
(11-13, 20-22, see fig. 4) were taken with large changes in
base-line causing fewer matches. The error in the estimate
of the focal length (and perhaps also the radial distortion)



caused in the standard bundle adjustment that the well cov-
ered data overweighted the small contribution from the back
of the hand. As a result, the hand and the head in place
above it are split into two discontinuous surfaces, see fig. 2.

Our approach to avoid such failures is to find which
EGs are more important for the geometry of the overall
3D model and to support such EGs more. Distinguishing
which EGs are more important for 3D is hard even if some
rough 3D model is given because there may be various de-
generacies like dominant planes and camera rotations. To
do it thoroughly, one should consider that on one hand wide
base-line pairs provide better conditioned 3D estimates but
on the other hand have smaller support due to large camera
movement.

Two terms should be distinguished: importance of an
EG and quality / reliability of an EG. An EG will be called
weak if it is not reliable. Even a weak EG can be important,
thus if it was removed, the overall geometry would change
much. On the other hand, a strong EG does not have to
be necessarily important, consider for instance two same
images. Here by an EG it is meant relative position and
orientation of the camera pair, which is equivalent to the
epipolar constraint plus camera calibration.

The larger the support is, the more reliable the EG could
seem to be. However, if many correspondences lie on a
dominant plane, the constraint on the overall geometry pro-
vided by the EG is rather weak. Quality / reliability of
an EG can be evaluated by perturbation of EG parame-
ters [7, 13].

One way for determining importance of an EG could be
to reconstruct / refine the 3D reconstruction without the EG
and observe how much the reconstruction bends. If it bends
much, the EG is important for the overall geometry. This
would be repeated for all EGs. Note that this approach is
very computationally demanding.

Our method is rather simple but worked well on our data.
It is based on finding shortest (and slightly longer) paths in
a graph induced by known EGs. Each vertex of the graph
stands for a camera. Two vertices are connected by an edge
iff there is a known EG between the corresponding cameras.
We have observed that

Principle 1 For estimating relative positions of any two
cameras, the most important EGs are those which lie on
the shortest paths between the two cameras.

Shorter paths seem to be more important than longer ones
because noise in each additional camera along the path in-
creases uncertainty in the 3D geometry between the two
cameras.

Let the graph of known EGs, G = (V, E), be defined as
a set of vertices, V , V = {1 . . .m}, and adjacency matrix,
E ∈ Rm×m, where V corresponds to cameras and E(i, j) =
1 when an EG is defined between cameras i and j, otherwise

E(i, j) = 0. In our current implementation, an EG is defined
if it has at least some minimal support (30 inliers).

The task is to estimate importance of all EGs. It will
be stored in EG importance matrix S ∈ Rm×m. Between
each pair of vertices, all shortest (and slightly longer) paths
will be found in a breadth-first-search manner as will be ex-
plained below. All such paths contribute to the importance
of EGs (associated with the edges) through which they pass.
All contributions are summed up in the EG importance S.

It is not sufficient to find just one shortest path between
two vertices in the graph. The reason is that if more short-
est paths exist, all participate in constraining the 3D geome-
try between the two cameras. Thus, Floyd-Warshall’s algo-
rithm [21] is not usable as it finds just one shortest path be-
tween two vertices, although it has low complexity O(m3).

Finding All Shortest Paths
A path means here a sequence of adjacent vertices and
edges where both can appear multiple times. In a simple
path, all vertices and edges are distinct.

It is well known in graph theory that Ek(i, j) equals the
number of all paths of length k between i and j where Ek is
the kth power of E. On a complete graph, i.e. E(i, j) = 1 iff
i 6= j, it can be easily shown that Ek(i, j) ≥ (m − 2)k−1

for i 6= j. Due to the exponential growth of the number
of paths with their length, finding all paths between two
vertices followed by adding some weight to the S matrix
on edges along the shortest paths is infeasible.

Our strategy is not to track all paths one by one (they are
too many) but to track all paths of length k from vertex f to
the remaining vertices at the same time. For each vertex, t,
all paths of length k from f to t are registered. As the only
desired output is the S matrix, i.e. some weights on graph
edges, it is sufficient to register not all particular paths but
only the number of paths leading via each edge. At each
vertex, t ∈ {1 . . .m}, matrix Ak

t ∈ Rm×m is stored. Entry
Ak

t (i, j) equals the number of all paths of length k between
vertices f and t leading via edge (i, j).

Our algorithm for finding all paths from a given ver-
tex, f , to the remaining vertices works as follows. Paths
of length one are registered, i.e. A1

i (f, i) = A1
i (i, f) = 1 for

i ∈ neighbors(f ). At step k, paths of length k are prolonged
and stored in matrices Ak+1

i . The shortest paths between f
and i are in Ak

i where

k = min{k | Ak
i is not all zeros}. (5)

Proposition 1 Matrix Ak
i corresponds to shortest paths

from f to i for k defined in eq. (5) (which also means they
are simple paths).

Proof. If there was any shorter path of length l, l < k, ma-
trix Al

i would have some non-zero element. Contradiction
with definition of k. 2



The algorithm is summarized in algorithm 1. Here,
norm |·| of a matrix denotes the sum of its elements, |A| =∑

i,j A(i, j). The upper bound on complexity of algorithm 1
is O(m3E) where E is the number of graph edges when us-
ing sparse matrix representation. It is run for all vertices:

initiate matrix S ∈ Rm×m to zeros
for f ∈ {1 . . .m}
S = S + Sf //contribution by paths from f

Thus, the overall complexity is at most O(m4E). It results
in a fraction of time spent in the reconstruction pipeline.

Input: A graph and a vertex, f . EG reliability matrix, w.
Output: Contribution, Sf , to the EG importance matrix
by all shortest and slightly longer paths from f to the re-
maining vertices. Similarly for contribution, Tf , to the EG
reliability-importance matrix.

initiate Ak
i , Wk

i ∈ Rm×m to zeros for i, k ∈ {1 . . .m}
for i ∈ neighbours(f )
A1

i (f, i) = A1
i (i, f) = 1

W1
i (f, i) = W1

i (i, f) = w(i, f)
for k ∈ {1 . . .m − 2} //prolong paths of length k

for p ∈ {i | Ak
i is not all zeros}

for t ∈ neighbours(p)
B = Ak

p //take all paths from f to p

V = Wk
p

B(t, p) = B(p, t) = B(p, t) + |Ak
p|

2k //prolong to t

V(t, p) = V(p, t) = V(p, t) + |Ak
p|

2k

Ak+1
t = Ak+1

t + B
Wk+1

t = Wk+1
t + V · w(p, t)

initiate Sf , Tf ∈ Rm×m to zeros
for t ∈ {1 . . .m}\f

l = min{l | Al
t is not all zeros} //shortest path to t

initiate B, V ∈ Rm×m to zeros
for k ∈ {l . . . d 3

2 le} //+ slightly longer
B = B + Ak

t
2
|Ak

t |
V = V + Wk

t
2
|Ak

t |
Sf = Sf + B 2

|B|
Tf = Tf + V 2

|V|

Algorithm 1: Algorithm for finding all shortest and slightly
longer paths from a given vertex to the remaining ones

Note on algorithm 1. The formula for the number, N , of

paths of length k leading from f to p, N = |Ak
p|

2k , can be
easily found by induction. It also holds N = Ek(f, p). 2

The EG importance, S, found using algorithm 1 on the
Head set is shown in figure 4a. It turns out that edges close
to articulations (here vertices 9 and 22) in the graph gather
up most importance, which is what is desired. However, it

(a) (b)

(c) (d)

Figure 4: Scoring of EGs using all shortest and slightly
longer paths on the Head set. (a) EG importance (b) EG reli-
ability (c) EG reliability-importance (d) 4% of the most im-
portant EGs. More important/reliable EGs are drawn darker
and thicker. The most shortest paths lead via articulations
(images 9 and 22). Images are reorded due to visualization

turns also out that shortest paths tend to include weak EGs,
which are prone to be completely wrong, like EG 2-19 be-
tween images with no overlap, see fig. 4a and 4b. Therefore,
two extensions are made:

1. So called EG reliability-importance matrix, T, is es-
timated similarly to the EG importance matrix S by
reweighting edges along each path by the correspond-
ing EG reliability. The EG reliability matrix, w ∈
Rm×m, holds the ij-EG support in w(i, j). See alg. 1.

2. Slightly longer (by factor of 3
2 in our implementation)

than the shortest paths are used also.

Both these extensions lead to suppressing of weak EGs
which lie along short paths (see fig. 4c), thus providing
higher robustness to mismatches and less sensitivity to the
threshold on an acceptable EG.

4.1. Using the EG importance
The estimated EG reliability-importance can be used in a
two ways: (i) First, it can be used to weight the corre-
sponding equation in (4) instead of EG support (see end of
sec. 3.2) and to weight the data in the BA in sec. 3.3 as well



as in the final BA. (ii) Second, the most important EGs can
be strengthened by adding appropriate image triples.

Unfortunately, important EGs have often small support,
thus triples containing them have even smaller (a point visi-
ble in three images must be visible in each image pair). Our
solution is to add triples containing only image i and triples
containing image j. In experiments shown in this paper,
4% of the EGs with the highest reliability-importance were
chosen (see fig. 4d). All triples containing at least one of the
images associated with these EGs were taken if all the three
EGs were defined. In the Head set, 69 triples were chosen.

One might use the three-view matches in BA to refine
the initial estimate obtained using pair-wise matches as de-
scribed in section 3. A better way is to exploit the data at
the very early stage for obtaining the consistent rotations in
section 3.2. This is very usefull as image triples provide
stronger constraints on 3D geometry. Thus, a better initial
estimate of the reconstruction may lead to avoiding some
local minima in BA.

Importance of a triple was estimated as the mean of the
reliability-importance of the three associated EGs weighted
by the number of the three-view inliers. Partial reconstruc-
tions of the chosen image triplets were obtained in the fol-
lowing way. (i) An initial estimate of the camera triple was
estimated from pair-wise reconstructions using algorithm
described in section 3. (ii) A four-point RANSAC was run
on three-view matches. For each sample, BA was run on
the four points to get the model (three camera matrices).
Support was obtained using triangulation. (iii) The recon-
stuction was refined by BA on two- and three-view inliers.

5. Experiments
In experiments reported here, pairwise image matching was
done with Local Affine Frames [16] constructed on inten-
sity and saturation MSER regions, LaplaceAffine and Hes-
sianAffine [17] interest points.

The Head sculpture was captured on 26 images. A sim-
ilar image set of 10 images was used in [5] but covering
only cca 120 degrees of the circular path around the statue.
91% data is missing. Figure 6 captures the all-around re-
construction with correct surface and surrounding buildings
obtained using the EG reliability-importance from sec. 4.1.

The proposed algorithm has been tested on the image set
from the final round of the ICCV Computer Vision Con-
test [1]. This difficult data set contains several panora-
mas with many camera rotations and dominant planes. Our
method achieved mean / maximum reprojection error of
3.01 / 4.87 meters evaluated on the GPS ground truth avail-
able at the contest page. Our result with average score 4.09
outperformed the best team in the contest. Cameras’ focal
length has not been calibrated using calibration grids avail-
able at the contest page. No radial distortion removal has

Avg. Score < 2 m (5 pts) < 4 m (4 pts) < 8 m (3 pts)
4.09 4 16 2

Figure 5: Reconstruction of the final round image set from
the ICCV05 Vision Contest: (top) top view. The black
points correspond to cameras with known GPS positions
used to transform the reconstruction into the world coor-
dinate system. Lines join the estimated cameras with the
ground truth. (bottom) Score is counted on cameras with
unknown GPS positions, see [1]

been applied. The results can be seen in figure 5. The bend-
ing of the reconstruction is caused by imprecise focal length
estimation and perhaps also radial distortion. This scene has
a linear structure without any cycle around an object like
in the Head set which could enforce strong constraints on
focal length. Two most distant cameras with known GPS
positions were aligned by a similarity to the ground truth.

To demonstrate quality of the reconstructions, the esti-
mated cameras were used by method [5] to produce dense
reconstructions. The results can be seen in figures 6 and 2.

Besides scenes shown here, our method was tested on
other scenes including the Dinosaur sequence with similar
results as in [15]. See more reconstructed scenes at [2].

6. Discussion
To handle degenerate situations, one might detect panora-
mas. However, decision if two images are related by a cam-
era rotation is difficult especially with an unreliable esti-
mate of focal length. All steps of our algorithm are suited
for both degenerated pairs and pairs describing full 3D ge-
ometry, which was demonstrated on the ICCVC05 data.

If all camera centers are collinear, 3D reconstruction ob-
tained using points visible in two images only will not be
unique. Then triples are needed as well.

Another possible application of the EG importance is de-
tection of most important image pairs for guided matching.

7. Summary
A new method for muttiple-view reconstruction based on
making rotations consistent using a linear formulation was
proposed. It can be used for an extreme case of the missing
data, i.e. when each point is visible in two images only. The
method is capable of dealing with degenerate situations like
dominant planes and camera rotation and zooming.



Figure 6: All-around reconstruction of the Head statue (from left): front view using fish-scales, side and overall top views
with reconstructed buildings around using point clouds (10% points shown)

It has been shown that standard bundle adjustment fails
on unequiponderantly obtained data with an imprecise esti-
mate of the focal length, but when importance of the data is
examined from a global view, correct reconstruction can be
obtained. For this purpose, a new criterion of importance
of an EG on the overall 3D geometry has been formulated
using shortest paths in a graph.
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