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Abstract. We present an automatic pipeline for recovering the geom-
etry of a 3D scene from a set of unordered, uncalibrated images. The
contributions in the paper are the presentation of the system as a whole,
from images to geometry, the estimation of the local scale for various
scene components in the orientation-topology module, the procedure for
orienting the cloud components, and the method for dealing with points
of contact. The methods are aimed to process complex scenes and non-
uniformly sampled, noisy data sets.

1 Introduction

In this paper we present a collection of computational methods and a pipeline
system which extracts the geometric structure of a scene and makes quantitative
measurements of the geometric properties of the objects in the scene from a set of
images taken in real-life conditions at different unknown discrete instances over
some period of time, without the luxury of performing calibration and param-
eter estimation during the acquisition. The pipeline does not require a human
in the loop. This work was motivated by many applications where, due to com-
munications, synchronization, equipment failures, and environmental factors, an
intelligent system is forced to make decisions from an unorganized set of images
offering partial views of the scene. The presented pipeline has three principal
stages: (i) an image-to-3D-point-and-tangent-plane pipeline; (ii) an orientation-
topology module which orients the cloud, assigns topology, and partitions it into
� This research was supported by The Czech Academy of Sciences under project

1ET101210406 and by the EU projects eTRIMS FP6-IST-027113 and DIRAC FP6-
IST-027787.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4292, pp. 802–813, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



3D Geometry from Uncalibrated Images 803

connected manifold components; and (iii) a geometry pipeline which recovers
the local surface geometry descriptors at each surface point.

The contributions in the paper are the presentation of the system as a whole,
from images to geometry, the estimation of the local scale for various scene
components in the orientation-topology module, the procedure for orienting the
cloud components, and a method of dealing with points of contact.

The results on two different sets of unorganized images are illustrated through
out the paper.

Previous Research. The data acquisition method implied by our scenario
could lead to reconstructions of exceptional geometric complexity. The point
clouds could be sparse and nonuniform; both positions and tangent plane esti-
mates are expected to be noisy. Because of noise, but also because of the freedom
to collect and combine different views, we might have objects that touch each
other – such touching objects should be separated. Furthermore, many of the
reconstructed surfaces will not be closed; they will have boundary points. There
are numerous surface reconstruction methods [1,2,3,10,11,12] which work well for
closed surfaces and clouds that satisfy some reasonable sampling conditions (for
example, uniformly sampled clouds, evenly sampled clouds, or densely sampled
clouds). Such methods require a human in the loop to deal with boundary points,
non uniformly sampled clouds, and touching surfaces. Furthermore, recent stud-
ies indicate that the polygonal surfaces and other surface type reconstructions
do not lead to gained precision in computing geometric properties [35]. What
is needed is a method to find neighborhoods tight in terms of surface distance
and a robust method for computing the differential properties at a point. The
framework proposed in [18] shows how to do this at the 3D point level without
ever spending time on reconstruction of polygonal, parametric, or implicit rep-
resentations. Here we present novel methods for adaptive scale selection and for
rapid orientation of a cloud endowed with tangent planes only (not oriented nor-
mals), see the relevant subsection in Section 2.2. The main difference with earlier
approaches [22,28] dealing with scale selection and orientation of point clouds is
that we do not impose limitations on the sampling density, do not assume known
noise statistics, and do not use a set of implicit tuning parameters; compared
to the orientation propagation in [14,12] which rely on minimum spanning tree,
our approach is more efficient since it does global flips on sets of normals.

Our system differs from the system for 3D reconstruction from video proposed
in [30], in two aspects: (i) the 3D reconstruction can be obtained from wide base-
line images only [24] and (ii) the scene is automatically segmented into objects.

2 System Overview: From Images to 3D Geometry

The system is organized as a pipeline consisting of three modules: the image-data
pipeline, the orientation-topology module, and the geometry pipeline. The input
data are photographs of the scene to be reconstructed, taken with a hand-held
compact digital camera which is free to move in the scene and to zoom in and
out. The images are input into the data pipeline which outputs an unorganized
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Fig. 1. The system: from images to cloud with 3D geometry descriptors

3D point cloud with fish-scales attached to the points.Each fish-scale encodes a
3D point and an estimate of the plane tangent to the cloud at this point. The fish-
scales (3D points with tangent planes) are input into the orientation-topology
module which recovers local scale, orientation and topology for the cloud and
separates it into connected manifold components. The latter are processed by the
geometry pipeline which recovers the geometric descriptors at the surface points.

2.1 The Data Pipeline

The data processing pipeline consists of several steps: (1) wide-baseline match-
ing, (2) structure from motion, (3) dense matching, (4) 3D model reconstruction.
The 3D model produced by the data pipeline consist of a collection of fish-scales.

We used the method in [24]. A brief sketch follows. First, sparse correspon-
dences are found across all image pairs. Pairwise image matching is done with
Local Affine Frames [26] constructed on intensity and saturation MSER regions,
LaplaceAffine and HessianAffine [27] interest points. An epipolar geometry unaf-
fected by a dominant plane is found using [7]. The inliers are used as the pool for
drawing samples in calibrated ransacs. This scheme is applied to the 6-point
algorithm [34] as well as to the 5-point algorithm [29]. First the 6-point algo-
rithm is run on all pairs (with some minimal support) and the focal length is
estimated as the mean of the estimates from individual pairs. Then, the 5-point
algorithm [29] is run using fully known camera internals.

A multi-view reconstruction is estimated given pair-wise Euclidean recon-
structions by [29] up to rotations, translations and scales. The partial recon-
structions are glued by the following three step procedure: (i) camera rotations
consistent with all reconstructions are estimated linearly; (ii) all the pair-wise
reconstructions are modified according to the new rotations and refined by bun-
dle adjustment while keeping the corresponding rotations same; (iii) the refined
rotations are used to estimate camera translations and 3D points using Second
Order Cone Programming by minimizing the L∞-norm [15].

The method from [24] can be used in extreme cases of missing data, i.e., when
each point is visible in two images only in a (sub)set of images. It is capable of
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dealing with degenerate situations like dominant planes, pure camera rotation
(panoramas) and zooming. The Head2 scene used in this paper is an example
in which all these inconveniences appear. No projective-to-metric upgrade is
needed as in [23]. Compared to incremental structure-from-motion methods,
gluing all pair-wise geometries at the same time has the advantage that the
global minimum of an approximation to the reprojection error is achieved [23].
As a consequence, no drift removal [9] is needed. The current limitation of [24]
is that the translation estimation using [15] can be harmed by mismatches. This
limitation can be removed by using the method in [33] instead. See [25] for a
demo with 3D vrml models of difficult data sets.

The next step is pairwise image rectification, which improves matching effi-
ciency. We use Hartley’s method [4]. Pairs for dense matching are selected based
on the mutual location of the cameras, as described in [8]. After that, dense
matching is performed as disparity search along epipolar lines using Stratified
Dense Matching [20]. The algorithm has a very low mismatch rate [21], it is fast,
robust, and accurate, and does not need any difficult-to-learn parameters. The
output from the matching algorithm is one disparity map per image pair admit-
ted for dense matching. By least squares estimation using an affine distortion
model the disparity maps are upgraded to sub-pixel resolution [31].

Fig. 2. The Data Pipeline: From an unorganized set of images to fish-scales. A fish-scale
is a 3D point with a local covariance ellipsoid centered at it. It encodes the position, a
measure of the spatial density and the tangent plane to the cloud at the 3D point.

The disparity maps are used to reconstruct the corresponding 3D points.
The union of the points from all disparity maps forms a dense point cloud. An
efficient way of representing distributions of points is to use fish-scales [32].
Fish-scales are local covariance ellipsoids that are fit to the points by the K-
means algorithm. They can be visualized as small round discs. A collection
of fish-scales approximate the spatial density function of the measurement in
3D space.

2.2 Orientation-Topology Module

To deal with the complexity of the data and noise (intermediate point sets re-
covered in the data pipeline use millions, redundant, noisy points) the points
in the final output cloud of the data pipeline are the centers of the fish-scales.
This cloud, unorganized set of fish-scale centers, together with the corresponding
set of the covariance ellipsoids is the input to the orientation-topology module.
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Fig. 3. The Data Pipeline: A series of images and the 3D cloud reconstructed from
them. The area around the door is reconstructed at much higher density than the rest
of the cloud.

Each covariance ellipsoid defines a tangent plane at the corresponding cloud
point. The output of the orientation-topology module is a consistently oriented,
topologized point cloud, each point of which is equipped with a normal and a
neighborhood of points closest to it in terms of surface distance; the points are
classified as isolated, curve, and surface points, and the later points are divided
into interior and boundary points; the connected components of the topologized
cloud are identified, thus the scene is segmented into objects.

A key parameter in the orientation-topology module is the determination
of geometrically meaningful local scales. In our scenario different parts of the
scene may be reconstructed at different scales since the unorganized set of input
images could consist of images collected at different zoom levels and possibly
obtained with different cameras. The orientation-topology module is based on
the ideas in [18] combined with novel adaptive scale selection and a method for
rapid orientation of the cloud endowed with tangent planes only (not oriented
normals), see subsection ”Scale, orientation and topology of 3D fish-scales cloud”
in Section 2.2. A key ingredient is the method for topologizing oriented point
clouds introduced in [17] and outlined below.

Topology of an Oriented Cloud (After [17,18]). An oriented point cloud
M is a set of 3D points p with normals N, M =

{
(p,N) ∈ R3 × S2

}
. The

neighbors of an oriented point P are chosen based on a proximity measure LP :
Mρ(P ) → [0, 1], where Mρ(P ) is a ball/voxel centered at p of radius ρ. For
every candidate neighbor Q = (q,Nq) ∈ Mρ(P ), LP (Q) expresses the likelihood
that Q is nearby P on the sampled surface. The likelihood incorporates three
estimators of surface distance: a linear estimator based on Euclidean distance, a
quadratic estimator based on the cosine between normals, and a new third order
estimator δp defined below (the last estimator is crucial in distinguishing points
which are far on the surface but close in Euclidean distance),
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LP (Q) =

(
1 − |p − q|

DEucl(P )

)
t(P, Q), where DEucl(P ) = max

Q′∈Mρ(P )
(|p − q′|),

t(P, Q) =
1

2
(1 + 〈Np |Nq 〉)

(
1 − δp(Q)

DSurf(P )

)

δp(Q) = | 〈Nq − Np |−→pq 〉 + 2 〈Np |−→pq 〉 |, and DSurf(P ) = max
Q′∈Mρ(P )

(δp(Q′)).

Note that < ·|· > in the equations above denotes the the Euclidean dot product
in R3. Once a scale ρ > 0 is chosen, then one can construct a neighborhood
U(P ) of an oriented point P = (p,N), U(P ) = {Qi = (qi,Ni) : |p − qi| < ρ},
such that the projection of qi in the plane through p perpendicular to N is not
inside a triangle fan centered at p and whose remaining vertices are projections
of the remaining base points in the neighborhood. The last condition implies
that each neighbor Qi carries unique information about the distribution of the
surface normals around P . Such a neighborhood is called Δ neighborhood of P
and the minimum of LP (Qi) is called the likelihood of the neighborhood.

The Δ neighborhoods provide a tool to classify the points in an oriented cloud.
The isolated points do not have Δ neighborhoods with positive likelihood; the
rest of the points are either curve points, boundary surface points, or interior
surface points. The point P is a surface point if one can use a Δ neighborhood
to estimate the orientation along at least two orthogonal directions emanating
from the base point. The point P is an interior surface point if one can use a
positive likelihood Δ neighborhood to compute the orientation in a full circle
of directions centered at p and perpendicular to N. A point is a curve point if
it is not a surface or an isolated point. The surface points are samples of 2D
manifolds and we can compute differential properties at each such point.

To build Δ neighborhoods we pre-compute and store in a look-up table the
proximity likelihoods for points within an Euclidean distance ρ. After that the
construction of the neighborhoods for different points can be done in paral-
lel. There is no additional burden involved in dealing with boundary points –
in contrast with the extra steps needed if one uses a Dealunay-Voronoi based
approach.

Scale, Orientation and Topology for 3D Fish-Scales Cloud. We use an
iterative procedure, OrientationAndTopology which simultaneously recovers
the voxel scales appropriate for the different parts of the cloud, the orientation
and topology, and partitions the cloud into connected components. See Figures 7
and 8.

The iterations correspond to the terms in an increasing sequence of voxel sizes.
Each re-entry in the loop processes a current fish-scale cloud equipped with an
entry orientation.

At the initial entry in the loop: the voxel size is set to equal the largest
fish-scale diameter in the fish-scale cloud; and the cloud is assigned an initial
orientation by choosing an orientation for each fish-scale plane so that all normals
point in the same fixed closed half-space (for example with respect to the x − y
plane.
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During each iteration a procedure, FixedScaleOrientationAndTopology is
used to compute orientation and topology adapted to this voxel scale, and the
connected manifold components. All sufficiently large 2D manifold components
are identified. As a heuristic at the moment we consider components to be large
if they contain at least 10% of the fish-scales in the current cloud. (Presently we
are developing a density based approach to determining the scale.) The current
voxel size is assigned as the corresponding scale for these components, then
they are removed from the fish-scale cloud, and are handed to the Geometry
pipeline. The entry orientation is updated to equal the normals assigned by
FixedScaleOrientatinAndTopology and the voxel size is increased linearly.

The loop is reentered until the fish-scales are exhausted.

FixedScaleOrientationAndTopology Procedure: The input is a voxel scale and
a cloud of 3D points with normals. It produces a topology (an adjacency graph)
by defining a Δ neighborhood for each point in the cloud, the connected com-
ponents of the cloud, and a new orientation of the cloud adapted to the Δ
neighborhoods. The whole process is organized as an iterative improvement (en-
larging connected manifold components from largest to smallest) of some initial
orientation and topology for fixed scale. The iteration stops when the compo-
nents stabilize.

During each iteration we use the current orientation and voxel scale to find
a topology by computing Δ neighborhoods. Then the cloud is segmented into
connected components by finding the strongly connected components of the ad-
jacency graph defined by the topology. Because the initial normals were chosen
up to sign, typically the same geometric object will be split into multiple compo-
nents (adjacent components with discontinuity in the Gauss map along adjacent
component boundaries). Thus we have to synchronize the normals of such com-
ponents.

The procedure explores the adjacency graph of the connected components
(not the whole cloud), always starting at the current largest component that has
not been touched previously. Two components are adjacent, if they have a pair of
boundary points within a scale unit from each other. The normals are averaged
over each of the two boundary points’ neighborhoods. If the angle between the
average normals is close to π, a decision whether to synchronize the normals of
the smaller component with the larger one is made based on the proximity like-
lihoods of the Δ neighborhoods of the interior points which are neighbors of the
boundary points in question. For interior surface points along boundary regions
with ”opposing” normals, but otherwise similar geometry, the likelihoods will be
highly correlated and similar. We sample the proximity likelihoods of points in
the Δ neighborhoods of the interior points adjacent to the boundary pair, thus
we construct two sets of samples, one sample set for each component. We do
a statistical test for the equality of the population means of the two samples,
and if the population means are equal, we reverse all normals of the smaller
component and mark the smaller component as ”flipped”. After all connected
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Fig. 4. Growing the topology and orientation. The final stage has a single 2D com-
ponent which captures 98% of the cloud points. This is a synthetic example using
randomly sampled points on a sphere.

Fig. 5. Two tangent surfaces: (Left) The original point cloud. (Right) The two largest
connected components: part of a sphere and part of a plane. The two components
contain roughly 94% of the cloud.

components with boundaries adjacent to the largest component are examined
(and possibly their normals reversed), the topology procedure is run again using
the updated normals. The reversal of the normals of a connected component can
be implemented very efficiently in almost any programming environment. This
orientation propagation amounts to a traversal of a tree with depth not bigger
than the number of connected components. This approach allows us to resolve
tangency cases as in Figure 5. Then the main loop of the procedure is re-entered
until the size of the largest connected component stops to increase. See Figure 4.

2.3 The Geometry Pipeline

The geometry pipeline takes 3D oriented, topologized components and com-
putes the geometric descriptors at surface points (mean curvature, Gauss cur-
vature, and principal curvature directions) following the methods in [14, 13].
These methods use discrete versions of (1)-(3): (1) is a basic identity, [19], used
for computing the mean curvature H , f is a surface parametrization with Gauss
map N, and for every tangent vector v, J(v) is the unique tangent vector sat-
isfying df (J(v)) = N × df (v); the Hopf form, ω (v), defined by (2), is used

in computing the symmetric, trace-free coefficient matrix A =
(

a b
b −a

)
of the

form < ω(·)|df(·) > with respect to an arbitrary positively oriented local basis
(u,v) (note that < ·|· > is the Euclidean dot product in R3); and in (3), K is
the Gauss curvature, and a and b are the entries of A as defined earlier.
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Fig. 6. Geometry Pipeline Output: The two curvature lines foliations extracted on a
2D component in the cloud from Figure 7

− Hdf (v) =
1
2

(dN(v) − N× dN(J(v))) (1)

ω (v) =
1
2

(dN(v) + N× dN(J(v))) (2)

K = H2 − (a2 + b2) (3)

The principal curvature vectors of are expressed explicitly in closed form involv-
ing the entries of the matrix A. Given an oriented point P and its neighborhood
U (P ) = {P, P1, . . . , PkP }, a directional derivative can be computed along each
edge pi − p. Thus, there is a 1-1 correspondence between the neighbors of P and
a set of adapted frames φi, defined as φi = (p,ui,vi,N ), where ui is a unit
vector collinear with the projection of pi − p in the plane orthogonal to N, and
vi = N × ui. Redundant computations of the geometry descriptors are done
based on each adapted frame φi, next the extreme values are trimmed and from
the rest of the descriptors, and by averaging, estimates of the final geometric
descriptors at the point are obtained. Multiple geometry pipelines can be run in
parallel for the different components. An extensive study and comparison of the

Fig. 7. Orientation-Topology Output: The two largest 2D components of the cloud
from Figure 2. Together they contain 12182 points out of the total 12692 points in the
scene reconstructed by the Data Pipeline.
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Fig. 8. Orientation-Topology Output: A high-resolution oriented 2D component (left)
and a lower resolution component (right) extracted from the cloud in Figure 3. The
high resolution component contains 3398 points and the low resolution contains 7012.
The total size of the cloud produced by the Data Pipeline is 12499 points.

methods for computing curvatures has been reported [16,35], and here for the
purpose of illustration we show two families of principal curvature directions.
See Figure 6.

3 Summary

The paper presents a methodology for recovering the geometry of a 3D scene
from a set of unordered, uncalibrated images. The images are fed into an au-
tomatic data processing pipeline which produces a collection of fish-scales; the
fish-scales the are presented as input in an automatic pipeline which assigns ori-
entation and topology, segments the cloud into connected manifold components,
and recovers the local surface geometry descriptors at each surface point. The
data pipeline, the recovery of the topology of an oriented cloud and the method
for computing the geometric surface descriptors have been introduced previously
and their performance had been analyzed [8,16,18,24]. The results presented here
are for illustrative purposes. The theoretical contributions presented are limited
to the iterative procedure that simultaneously recovers orientation, topology and
segments the cloud into manifold components. We are conducting a performance
evaluation and comparison study focusing on the orientation and scale selection.
The results are the subject of a forthcoming paper.
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